首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the effects of isocapnic hypoxia (IHO) and hyperoxic hypercapnia (HC) on sympathetic nerve activity (SNA) recorded from a peroneal nerve in 13 normal subjects. HC caused greater increases in blood pressure (BP), minute ventilation (VE), and SNA [53 +/- 14% (SE) during HC vs. 21 +/- 7% during IHO; P less than 0.05]. Even at equivalent levels of VE, HC still elicited greater SNA than IHO. However, apnea during HC caused a lesser (P less than 0.05) increase in SNA (91 +/- 26% compared with apnea on room air) than apnea during IHO (173 +/- 50%). Hypercapnic hypoxia resulted in a greater absolute increase in VE (23.6 +/- 2.8 l/min) than the additive increases due to HC alone plus IHO alone (18.0 +/- 1.8 l/min, P less than 0.05). SNA also increased synergistically by 108 +/- 23% with the combined stimulus compared with the additive effect of HC alone plus IHO alone (68 +/- 19%; P less than 0.05). We conclude that 1) HC causes greater increases in VE and SNA than does hypoxia; 2) for the same increase in VE, hypercapnia still causes a greater increase in SNA than hypoxia; however, during apnea, hypoxia causes a much greater increase in SNA than hypercapnia; 3) the inhibitory influence of ventilation on SNA is greater during hypoxia (i.e., predominantly peripheral chemoreceptor stimulation) than hypercapnia (i.e., predominantly central chemoreceptor stimulation); and 4) combined hypoxia and hypercapnia have a synergistic effect on SNA as well as on VE.  相似文献   

2.
We tested the hypothesis that the decline in muscle sympathetic activity during and after 8 h of poikilocapnic hypoxia (Hx) was associated with a greater sympathetic baroreflex-mediated responsiveness. In 10 healthy men and women (n=2), we measured beat-to-beat blood pressure (Portapres), carotid artery distension (ultrasonography), heart period, and muscle sympathetic nerve activity (SNA; microneurography) during two baroreflex perturbations using the modified Oxford technique before, during, and after 8 h of hypoxia (84% arterial oxygen saturation). The integrated baroreflex response [change of SNA (DeltaSNA)/change of diastolic blood pressure (DeltaDBP)], mechanical (Deltadiastolic diameter/DeltaDBP), and neural (DeltaSNA/Deltadiastolic diameter) components were estimated at each time point. Sympathetic baroreflex responsiveness declined throughout the hypoxic exposure and further declined upon return to normoxia [pre-Hx, -8.3+/-1.2; 1-h Hx, -7.2+/-1.0; 7-h Hx, -4.9+/-1.0; and post-Hx: -4.1+/-0.9 arbitrary integrated units (AIU) x min(-1) x mmHg(-1); P<0.05 vs. previous time point for 1-h, 7-h, and post-Hx values]. This blunting of baroreflex-mediated efferent outflow was not due to a change in the mechanical transduction of arterial pressure into barosensory stretch. Rather, the neural component declined in a similar pattern to that of the integrated reflex response (pre-Hx, -2.70+/-0.53; 1-h Hx, -2.59+/-0.53; 7-h Hx, -1.60+/-0.34; and post-Hx, -1.34+/-0.27 AIU x min(-1) x microm(-1); P < 0.05 vs. pre-Hx for 7-h and post-Hx values). Thus it does not appear as if enhanced baroreflex function is primarily responsible for the reduced muscle SNA observed during intermediate duration hypoxia. However, the central transduction of baroreceptor afferent neural activity into efferent neural activity appears to be reduced during the initial stages of peripheral chemoreceptor acclimatization.  相似文献   

3.
The role of the 5-hydroxytryptamine (5-HT1A) receptors in the rostral ventrolateral medulla (RVLM) on somatosympathetic, baroreceptor, and chemoreceptor reflexes was examined in anesthetized rats. Microinjection of the selective 5-HT1A agonist 8-hydroxy-di-n-propylamino tetralin (8-OH-DPAT) decreased arterial blood pressure and splanchnic sympathetic nerve activity (SNA). Electrical stimulation of the hindlimb evoked early and late excitatory sympathetic responses. Bilateral microinjection in the RVLM of 8-OH-DPAT markedly attenuated both the early and late responses. This potent inhibition of the somatosympathetic reflex persisted even after SNA and arterial blood pressure returned to preinjection levels. Preinjection of the selective 5-HT1A antagonist NAN-190 in the RVLM blocked the sympathoinhibitory effect of 8-OH-DPAT and attenuated the inhibitory effect on the somatosympathetic reflex. 8-OH-DPAT injected in the RVLM did not affect baroreceptor or chemoreceptor reflexes. Our findings suggest that activation of 5-HT1A receptors in the RVLM exerts a potent, selective inhibition on the somatosympathetic reflex.  相似文献   

4.
Short-term intermittent hypoxia leads to sustained sympathetic activation and a small increase in blood pressure in healthy humans. Because obstructive sleep apnea, a condition associated with intermittent hypoxia, is accompanied by elevated sympathetic activity and enhanced sympathetic chemoreflex responses to acute hypoxia, we sought to determine whether intermittent hypoxia also enhances chemoreflex activity in healthy humans. To this end, we measured the responses of muscle sympathetic nerve activity (MSNA, peroneal microneurography) to arterial chemoreflex stimulation and deactivation before and following exposure to a paradigm of repetitive hypoxic apnea (20 s/min for 30 min; O(2) saturation nadir 81.4 +/- 0.9%). Compared with baseline, repetitive hypoxic apnea increased MSNA from 113 +/- 11 to 159 +/- 21 units/min (P = 0.001) and mean blood pressure from 92.1 +/- 2.9 to 95.5 +/- 2.9 mmHg (P = 0.01; n = 19). Furthermore, compared with before, following intermittent hypoxia the MSNA (units/min) responses to acute hypoxia [fraction of inspired O(2) (Fi(O(2))) 0.1, for 5 min] were enhanced (pre- vs. post-intermittent hypoxia: +16 +/- 4 vs. +49 +/- 10%; P = 0.02; n = 11), whereas the responses to hyperoxia (Fi(O(2)) 0.5, for 5 min) were not changed significantly (P = NS; n = 8). Thus 30 min of intermittent hypoxia is capable of increasing sympathetic activity and sensitizing the sympathetic reflex responses to hypoxia in normal humans. Enhanced sympathetic chemoreflex activity induced by intermittent hypoxia may contribute to altered neurocirculatory control and adverse cardiovascular consequences in sleep apnea.  相似文献   

5.
Obstructive apnea and voluntary breath holding are associated with transient increases in muscle sympathetic nerve activity (MSNA) and arterial pressure. The contribution of changes in blood flow relative to the contribution of changes in vascular resistance to the apnea-induced transient rise in arterial pressure is unclear. We measured heart rate, mean arterial blood pressure (MAP), MSNA (peroneal microneurography), and femoral artery blood velocity (V(FA), Doppler) in humans during voluntary end-expiratory apnea while they were exposed to room air, hypoxia (10.5% inspiratory fraction of O2), and hyperoxia (100% inspiratory fraction of O2). Changes from baseline of leg blood flow (Q) and vascular resistance (R) were estimated from the following relationships: Q proportional to V(FA), corrected for the heart rate, and R proportional to MAP/Q. During apnea, MSNA rose; this rise in MSNA was followed by a rise in MAP, which peaked a few seconds after resumption of breathing. Responses of MSNA and MAP to apnea were greatest during hypoxia and smallest during hyperoxia (P < 0.05 for both compared with room air breathing). Similarly, apnea was associated with a decrease in Q and an increase in R. The decrease in Q was greatest during hypoxia and smallest during hyperoxia (-25 +/- 3 vs. -6 +/- 4%, P < 0.05), and the increase in R was the greatest during hypoxia and the least during hyperoxia (60 +/- 8 vs. 21 +/- 6%, P < 0.05). Thus voluntary apnea is associated with vasoconstriction, which is in part mediated by the sympathetic nervous system. Because apnea-induced vasoconstriction is most intense during hypoxia and attenuated during hyperoxia, it appears to depend at least in part on stimulation of arterial chemoreceptors.  相似文献   

6.
beta-Adrenergic agonists may increase chemosensitivity in humans. We tested the hypothesis that the beta1-agonist dobutamine increases peripheral chemosensitivity in a double-blind placebo-controlled randomized and crossover study. In 15 healthy subjects, we examined the effects of dobutamine on breathing, hemodynamics, and sympathetic nerve activity (measured using microneurography) during normoxia, isocapnic hypoxia (10% O2), posthypoxic maximal voluntary end-expiratory apnea, hyperoxic hypercapnia, and cold pressor test (CPT). Dobutamine increased ventilation (7.5 +/- 0.3 vs. 6.7 +/- 0.2 l/min, P = 0.0004) during normoxia, markedly enhanced the ventilatory (16.1 +/- 1.6 vs. 11.4 +/- 0.7 l/min, P < 0.0001) and sympathetic (+403 +/- 94 vs. +222 +/- 5%, P < 0.03) responses at the fifth minute of isocapnic hypoxia, and enhanced the sympathetic response to the apnea performed after hypoxia (+501 +/- 107% vs. +291 +/- 38%, P < 0.05). No differences were observed between dobutamine and placebo on the responses to hyperoxic hypercapnia and CPT. Dobutamine increases ventilation during normoxia and potentiates the ventilatory and sympathetic responses to hypoxia in healthy subjects. Dobutamine does not affect the responses to hyperoxic hypercapnia and CPT. We conclude that dobutamine enhances peripheral chemosensitivity.  相似文献   

7.
To test whether active hyperventilation activates the "afterdischarge" mechanism during non-rapid-eye-movement (NREM) sleep, we investigated the effect of abrupt termination of active hypoxia-induced hyperventilation in normal subjects during NREM sleep. Hypoxia was induced for 15 s, 30 s, 1 min, and 5 min. The last two durations were studied under both isocapnic and hypocapnic conditions. Hypoxia was abruptly terminated with 100% inspiratory O2 fraction. Several room air-to-hyperoxia transitions were performed to establish a control period for hyperoxia after hypoxia transitions. Transient hyperoxia alone was associated with decreased expired ventilation (VE) to 90 +/- 7% of room air. Hyperoxic termination of 1 min of isocapnic hypoxia [end-tidal PO2 (PETO2) 63 +/- 3 Torr] was associated with VE persistently above the hyperoxic control for four to six breaths. In contrast, termination of 30 s or 1 min of hypocapnic hypoxia [PETO2 49 +/- 3 and 48 +/- 2 Torr, respectively; end-tidal PCO2 (PETCO2) decreased by 2.5 or 3.8 Torr, respectively] resulted in hypoventilation for 45 s and prolongation of expiratory duration (TE) for 18 s. Termination of 5 min of isocapnic hypoxia (PETO2 63 +/- 3 Torr) was associated with central apnea (longest TE 200% of room air); VE remained below the hyperoxic control for 49 s. Termination of 5 min of hypocapnic hypoxia (PETO2 64 +/- 4 Torr, PETCO2 decreased by 2.6 Torr) was also associated with central apnea (longest TE 500% of room air). VE remained below the hyperoxic control for 88 s. We conclude that 1) poststimulus hyperpnea occurs in NREM sleep as long as hypoxia is brief and arterial PCO2 is maintained, suggesting the activation of the afterdischarge mechanism; 2) transient hypocapnia overrides the potentiating effects of afterdischarge, resulting in hypoventilation; and 3) sustained hypoxia abolishes the potentiating effects of after-discharge, resulting in central apnea. These data suggest that the inhibitory effects of sustained hypoxia and hypocapnia may interact to cause periodic breathing.  相似文献   

8.
This study was undertaken to measure the neonate's response to CO-induced hypoxia in the first 10 days of life. CO breathing was used to induce hypoxia because CO causes tissue hypoxia with no or minimal chemoreceptor stimulation. An inspired gas mixture of 0.25 to 0.5% CO in air was used to raise the blood carboxyhemoglobin (HbCO) progressively from 0 to 60% over approximately 20 min. The study, conducted in awake conscious lambs aged 2 and 10 days, consisted in measuring the response of ventilation and the change in arterial blood gases during the rise of HbCO. The results showed that the 2- and 10-day-old lambs tolerated very high HbCO levels without an increase in minute ventilation (VE) and without metabolic acidosis. At both ages, HbCO caused no VE change until HbCO levels rose to between 45 and 50% after which the VE change was exponential in some animals but minimal in others. The VE change was brought about by a rise in tidal volume and respiratory frequency. During the period of maturation from 2 to 10 days, there was a small shift to the right in the VE-HbCO response. In the 10-day-old lambs the VE response to high HbCO was greater than that of the 2-day-olds because of the lambs' higher respiratory frequency response. Six of the 10-day-old lambs but only two of the 2-day-old lambs showed a hypoxic tachypnea to HbCO of 55-65%. None of the lambs developed periodic breathing, dysrhythmic breathing, or recurrent apneas with an HbCO level as high as 60%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of carbonic anhydrase inhibition with acetazolamide (Acz, 10 mg/kg) on the ventilatory response to an abrupt switch into hyperoxia (end-tidal PO2 = 450 Torr) and hypoxia (end-tidal PO2 = 50 Torr) was examined in five male subjects [30 +/- 3 (SE) yr]. Subjects exercised at a work rate chosen to elicit an O2 uptake equivalent to 80% of the ventilatory threshold. Ventilation (VE) was measured breath by breath. Arterial oxyhemoglobin saturation (%SaO2) was determined by ear oximetry. After the switch into hyperoxia, VE remained unchanged from the steady-state exercise prehyperoxic value (60.6 +/- 6.5 l/min) during Acz. During control studies (Con), VE decreased from the prehyperoxic value (52.4 +/- 5.5 l/min) by approximately 20% (VE nadir = 42.4 +/- 6.3 l/min) within 20 s after the switch into hyperoxia. VE increased during Acz and Con after the switch into hypoxia; the hypoxic ventilatory response was significantly lower after Acz compared with Con [Acz, change (Delta) in VE/DeltaSaO2 = 1.54 +/- 0.10 l. min-1. SaO2-1; Con, DeltaVE/DeltaSaO2 = 2.22 +/- 0.28 l. min-1. SaO2-1]. The peripheral chemoreceptor contribution to the ventilatory drive after acute Acz-induced carbonic anhydrase inhibition is not apparent in the steady state of moderate-intensity exercise. However, Acz administration did not completely attenuate the peripheral chemoreceptor response to hypoxia.  相似文献   

10.
We determined the effects of specific carotid body chemoreceptor inhibition on the propensity for apnea during sleep. We reduced the responsiveness of the carotid body chemoreceptors using intravenous dopamine infusions during non-rapid eye movement sleep in six dogs. Then we quantified the difference in end-tidal Pco(2) (Pet(CO(2))) between eupnea and the apneic threshold, the "CO(2) reserve," by gradually reducing Pet(CO(2)) transiently with pressure support ventilation at progressively increased tidal volume until apnea occurred. Dopamine infusions decreased steady-state eupneic ventilation by 15 +/- 6%, causing a mean CO(2) retention of 3.9 +/- 1.9 mmHg and a brief period of ventilatory instability. The apneic threshold Pet(CO(2)) rose 5.1 +/- 1.9 Torr; thus the CO(2) reserve was narrowed from -3.9 +/- 0.62 Torr in control to -2.7 +/- 0.78 Torr with dopamine. This decrease in the CO(2) reserve with dopamine resulted solely from the 20.5 +/- 11.3% increase in plant gain; the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal. We conclude that specific carotid chemoreceptor inhibition with dopamine increases the propensity for apnea during sleep by narrowing the CO(2) reserve below eupnea. This narrowing is due solely to an increase in plant gain as the slope of the ventilatory response to CO(2) below eupnea was unchanged from normal control. These findings have implications for the role of chemoreceptor inhibition/stimulation in the genesis of apnea and breathing periodicity during sleep.  相似文献   

11.
To determine the effect of a single breath of 100% O2 on ventilation, 10 full-term [body wt 3,360 +/- 110 (SE) g, gestational age 39 +/- 0.4 wk, postnatal age 3 +/- 0.6 days] and 10 preterm neonates (body wt 2,020 +/- 60 g, gestational age 34 +/- 2 wk, postnatal age 9 +/- 2 days) were studied during active and quiet sleep states. The single-breath method was used to measure peripheral chemoreceptor response. To enhance response and standardize the control period for all infants, fractional inspired O2 concentration was adjusted to 16 +/- 0.6% for a control O2 saturation of 83 +/- 1%. After 1 min of control in each sleep state, each infant was given a single breath of O2 followed by 21% O2. Minute ventilation (VE), tidal volume (VT), breathing frequency (f), alveolar O2 and CO2 tension, O2 saturation (ear oximeter), and transcutaneous O2 tension were measured. VE always decreased with inhalation of O2 (P less than 0.01). In quiet sleep, the decrease in VE was less in full-term (14%) than in preterm (40%) infants (P less than 0.001). Decrease in VE was due primarily to a drop in VT in full-term infants as opposed to a fall in f and VT in preterm infants (P less than 0.05). Apnea, as part of the response, was more prevalent in preterm than in full-term infants. In active sleep the decrease in VE was similar both among full-term (19%) and preterm (21%) infants (P greater than 0.5). These results suggest greater peripheral chemoreceptor response in preterm than in full-term infants, reflected by a more pronounced decrease in VE with O2. The results are compatible with a more powerful peripheral chemoreceptor contribution to breathing in preterm than in full-term infants.  相似文献   

12.
Elucidation of the interaction between the muscle mechanoreflex and the arterial baroreflex is essential for better understanding of sympathetic regulation during exercise. We characterized the effects of these two reflexes on sympathetic nerve activity (SNA) in anesthetized rabbits (n = 7). Under open-loop baroreflex conditions, we recorded renal SNA at carotid sinus pressure (CSP) of 40, 80, 120, or 160 mmHg while passively stretching the hindlimb muscle at muscle tension (MT) of 0, 2, 4, or 6 kg. The MT-SNA relationship at CSP of 40 mmHg approximated a straight line. Increase in CSP from 40 to 120 and 160 mmHg shifted the MT-SNA relationship downward and reduced the response range (the difference between maximum and minimum SNA) to 43 +/- 10% and 19 +/- 6%, respectively (P < 0.01). The CSP-SNA relationship at MT of 0 kg approximated a sigmoid curve. Increase in MT from 0 to 2, 4, and 6 kg shifted the CSP-SNA relationship upward and extended the response range to 133 +/- 8%, 156 +/- 14%, and 178 +/- 15%, respectively (P < 0.01). A model of algebraic summation, i.e., parallel shift, with a threshold of SNA functionally reproduced the interaction of the two reflexes (y = 1.00x - 0.01; r(2) = 0.991, root mean square = 2.6% between estimated and measured SNA). In conclusion, the response ranges of SNA to baroreceptor and muscle mechanoreceptor input changed in a manner that could be explained by a parallel shift with threshold.  相似文献   

13.
Cardiovascular failure and apnea in shock   总被引:1,自引:0,他引:1  
A model of shock was developed in anesthetized dogs by limiting venous return with a balloon inflated in the right atrium. The change in ventilation (VE) in response to a sustained decrease in arterial pressure (Pa) to 50-60 Torr was studied by recording transdiaphragmatic pressure (Pdi) and diaphragm (Edi) and parasternal intercostal (Eic) electrical activity. Four dogs died of cardiac arrest after 20-60 min. In 11 dogs, VE, after an initial increase, decreased progressively until apnea occurred after 103 +/- 24 min, after 60% reductions in breathing frequency, Pdi, and Eic and a 30% fall in Edi. No decrease in diaphragm contractility was found in response to artificial phrenic nerve stimulation. The cardiocirculatory function deteriorated during shock until it became irreversible at apneic time. No recovery from apnea occurred without a recovery of Pa. We conclude that the fall in VE and ensuing apnea in this model resulted from a decrease in central respiratory neural output associated with a progressive deterioration of the cardiocirculatory function.  相似文献   

14.
Inspiratory central drive is augmented by acute hypoxia that leads to a hyperventilation, but it is inhibited by capsaicin (Cap)-induced stimulation of pulmonary C fibers (PCFs) that produces an expiratory apnea. We hypothesized that acute hypoxia should shorten or eliminate the Cap-induced apnea. The ventilatory responses to bolus injection of Cap (0.2-0.5 microg) into the right atrium before and during acute hypoxia (10% O(2) for approximately 1 min; Hypoxia+Cap) were compared in anesthetized and spontaneously breathing rats. We found that Cap injection during acute hypoxia produced an extremely long-lasting apnea (69.67 +/- 11.97 s) that was 16-fold longer than the apnea induced by Cap alone (expiratory duration = 4.37 +/- 0.53 s; P < 0.01). A similar prolonged apnea was also observed during hypoxia in anesthetized guinea pigs. Bilateral vagotomy abolished apneic responses to Cap both before and during hypoxia. Subsequent recording of single-fiber activity of PCFs (PCF(A)) showed that acute hypoxia did not significantly affect baseline PCF(A) but that it doubled PCF(A) responses to Cap via increasing both the firing rate (3.34 +/- 0.76 to 7.65 +/- 1.32 impulses/s; P < 0.05) and burst duration (1.12 +/- 0.18 to 2.32 +/- 0.31 s; P < 0.05). These results suggest that acute hypoxia augments PCF-mediated inspiratory inhibition and thereby leads to an extremely long-lasting apnea. This interaction is partially due to hypoxic sensitization of PCF response to Cap.  相似文献   

15.
Carotid chemoreceptor activity during acute and sustained hypoxia in goats   总被引:6,自引:0,他引:6  
The role of carotid body chemoreceptors in ventilatory acclimatization to hypoxia, i.e., the progressive, time-dependent increase in ventilation during the first several hours or days of hypoxic exposure, is not well understood. The purpose of this investigation was to characterize the effects of acute and prolonged (up to 4 h) hypoxia on carotid body chemoreceptor discharge frequency in anesthetized goats. The goat was chosen for study because of its well-documented and rapid acclimatization to hypoxia. The response of the goat carotid body to acute progressive isocapnic hypoxia was similar to other species, i.e., a hyperbolic increase in discharge as arterial PO2 (PaO2) decreased. The response of 35 single chemoreceptor fibers to an isocapnic [arterial PCO2 (PaCO2) 38-40 Torr)] decrease in PaO2 of from 100 +/- 1.7 to 40.7 +/- 0.5 (SE) Torr was an increase in mean discharge frequency from 1.7 +/- 0.2 to 5.8 +/- 0.4 impulses. During sustained isocapnic steady-state hypoxia (PaO2 39.8 +/- 0.5 Torr, PaCO2, 38.4 +/- 0.4 Torr) chemoreceptor afferent discharge frequency remained constant for the first hour of hypoxic exposure. Thereafter, single-fiber chemoreceptor afferents exhibited a progressive, time-related increase in discharge (1.3 +/- 0.2 impulses.s-1.h-1, P less than 0.01) during sustained hypoxia of up to 4-h duration. These data suggest that increased carotid chemoreceptor activity contributes to ventilatory acclimatization to hypoxia.  相似文献   

16.
Chemoreflex control of sympathetic nerve activity is exaggerated in heart failure (HF) patients. However, the vascular implications of the augmented sympathetic activity during chemoreceptor activation in patients with HF are unknown. We tested the hypothesis that the muscle blood flow responses during peripheral and central chemoreflex stimulation would be blunted in patients with HF. Sixteen patients with HF (49 +/- 3 years old, Functional Class II-III, New York Heart Association) and 11 age-paired normal controls were studied. The peripheral chemoreflex control was evaluated by inhalation of 10% O(2) and 90% N(2) for 3 min. The central chemoreflex control was evaluated by inhalation of 7% CO(2) and 93% O(2) for 3 min. Muscle sympathetic nerve activity (MSNA) was directly evaluated by microneurography. Forearm blood flow was evaluated by venous occlusion plethysmography. Baseline MSNA were significantly greater in HF patients (33 +/- 3 vs. 20 +/- 2 bursts/min, P = 0.001). Forearm vascular conductance (FVC) was not different between the groups. During hypoxia, the increase in MSNA was significantly greater in HF patients than in normal controls (9.0 +/- 1.6 vs. 0.8 +/- 2.0 bursts/min, P = 0.001). The increase in FVC was significantly lower in HF patients (0.00 +/- 0.10 vs. 0.76 +/- 0.25 units, P = 0.001). During hypercapnia, MSNA responses were significantly greater in HF patients than in normal controls (13.9 +/- 3.2 vs. 2.1 +/- 1.9 bursts/min, P = 0.001). FVC responses were significantly lower in HF patients (-0.29 +/- 0.10 vs. 0.37 +/- 0.18 units, P = 0.001). In conclusion, muscle vasodilatation during peripheral and central chemoreceptor stimulation is blunted in HF patients. This vascular response seems to be explained, at least in part, by the exaggerated MSNA responses during hypoxia and hypercapnia.  相似文献   

17.
There is considerable interindividual variation in ventilatory response to hypoxia in humans but the mechanism remains unknown. To examine the potential contribution of variable peripheral chemorecptor function to variation in hypoxic ventilatory response (HVR), we compared the peripheral chemoreceptor and ventilatory response to hypoxia in 51 anesthetized cats. We found large interindividual differences in HVR spanning a sevenfold range. In 23 cats studied on two separate days, ventilatory measurements were correlated (r = 0.54, P less than 0.01), suggesting stable interindividual differences. Measurements during wakefulness and in anesthesia in nine cats showed that although anesthesia lowered the absolute HVR it had no influence on the range or the rank of the magnitude of the response of individuals in the group. We observed a positive correlation between ventilatory and carotid sinus nerve (CSN) responses to hypoxia measured during anesthesia in 51 cats (r = 0.63, P less than 0.001). To assess the translation of peripheral chemoreceptor activity into expiratory minute ventilation (VE) we used an index relating the increase of VE to the increase of CSN activity for a given hypoxic stimulus (delta VE/delta CSN). Comparison of this index for cats with lowest (n = 5, HVR A = 7.0 +/- 0.8) and cats with highest (n = 5, HVR A = 53.2 +/- 4.9) ventilatory responses showed similar efficiency of central translation (0.72 +/- 0.06 and 0.70 +/- 0.08, respectively). These results indicate that interindividual variation in HVR is associated with comparable variation in hypoxic sensitivity of carotid bodies. Thus differences in peripheral chemoreceptor sensitivity may contribute to interindividual variability of HVR.  相似文献   

18.
Almitrine bimesylate is a potent and long-lasting respiratory stimulant in adult species. It acts by stimulating the peripheral chemoreceptors, where it has been shown to accumulate specifically, although its exact mechanism of action is uncertain. In the fetal lamb, however, it produces a profound inhibition of breathing even after denervation of the peripheral chemoreceptors. In this respect its action is similar to hypoxia. To investigate whether almitrine is hypoxia mimetic, we examined the effect of almitrine in nine fetal lambs of 120-130 days gestation. Five had lesions in the lateral pons that changed the fetal depressive response to hypoxia to one of stimulation. In the remaining four fetuses, the lesions did not bilaterally encompass the appropriate area of the pons; thus they still showed the normal fetal depressive response to hypoxia and so acted as controls. Almitrine (10 mg iv) caused a pronounced stimulation of breathing that lasted 406 +/- 26 min in all five fetuses with lesions that caused a stimulatory response to hypoxia. However, in the remaining four fetuses, in which the response to hypoxia was inhibitory, almitrine caused an inhibition of breathing that lasted 184 +/- 28 min. We conclude that the action of almitrine is like that of hypoxia and that, because it acts specifically on the chemoreceptors, it may prove to be a useful tool in the study of possible central chemoreceptor mechanisms.  相似文献   

19.
Increases in brain stem blood flow (BBF) during hypoxia may decrease tissue PCO2/[H+], causing minute ventilation (VE) to decrease. To determine whether an increase in BBF, isolated from changes in arterial PO2 and PCO2, can affect respiration, we obstructed the thoracic aorta with a balloon in 31 intact and 24 peripherally chemobarodenervated, anesthetized, spontaneously breathing newborn piglets. Continuous measurements of cardiorespiratory variables were made before and during 2 min of aortic obstruction. Radiolabeled microspheres were used to measure BBF before and approximately 30 s after balloon inflation in eight intact and five denervated animals. After balloon inflation, there was a rapid increase in mean blood pressure in both the intact and denervated animals, followed within 10 s by a decrease in tidal volume and VE. In the intact animals, the decrease in VE after acute hypertension can be ascribed to a baroreceptor-mediated reflex. After peripheral chemobarodenervation, however, acute hypertension continued to produce a decrease in VE, which cannot be explained by baroreceptor stimulation. In these denervated animals, aortic balloon inflation was associated with an increase in BBF (13.1 +/- 2.7%; P less than 0.05). We speculate that the increase in BBF during hypoxia may contribute to the decrease in ventilation observed after carotid body denervation.  相似文献   

20.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号