首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $5.54/annual gallon of hydrocarbon fuels (US 3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $60/tonne biomass] is US 2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US 1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US 65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $45/dry tonne) and current price of external hydrogen (US 1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $1.24/gal hydrocarbon (US 0.85/gal ethanol equivalent).  相似文献   

2.
Plants to power: bioenergy to fuel the future   总被引:1,自引:0,他引:1  
Bioenergy should play an essential part in reaching targets to replace petroleum-based transportation fuels with a viable alternative, and in reducing long-term carbon dioxide emissions, if environmental and economic sustainability are considered carefully. Here, we review different platforms, crops, and biotechnology-based improvements for sustainable bioenergy. Among the different platforms, there are two obvious advantages to using lignocellulosic biomass for ethanol production: higher net energy gain and lower production costs. However, the use of lignocellulosic ethanol as a viable alternative to petroleum-based transportation fuels largely depends on plant biotechnology breakthroughs. We examine how biotechnology, such as lignin modification, abiotic stress resistance, nutrition usage, in planta expression of cell wall digestion enzymes, biomass production, feedstock establishment, biocontainment of transgenes, metabolic engineering, and basic research, can be used to address the challenges faced by bioenergy crop production.  相似文献   

3.
Petroleum-derived liquid fuels and commodities play a part in nearly every aspect of modern daily life. However, dependence on this one natural resource to maintain modern amenities has caused negative environmental and geopolitical ramifications. In an effort to replace petroleum, technologies to synthesize liquid fuels and other commodities from renewable biomass are being developed. Current technologies, however, only use a portion of plant biomass feedstocks for fuel and useful products. "Using the whole feedstock buffalo" or optimally using all portions and biochemicals present in renewable biomass will enhance the economic and environmental feasibility of biofuels and coproducts. To accomplish this optimization, greater understanding of the relationship between liquid fuel and bioproduct properties and plant chemistries is needed. Liquid fuel properties and how they relate to biochemistry and petrochemistry are discussed. Enhanced biofuel yields and high-value commodities from biomass are needed to sustainably replace petroleum-based products. Several metabolic engineering strategies are discussed. We will describe paths of possible fuel and product diversification using dedicated lignocellulosic biomass (e.g., switchgrass).  相似文献   

4.
The world in the 21st century is facing a dual crisis of increasing waste and global climate change. Substituting fossil fuels with waste biomass‐derived cellulosic ethanol is a promising strategy to simultaneously meet part of our energy needs, mitigate greenhouse gas (GHG) emissions, and manage municipal solid waste (MSW). However, the global potential of MSW as an energy source is as yet unquantified. Here, we report increasing trends of MSW generation, and waste biomass‐derived cellulosic ethanol potentials in relation to socio‐economic development across 173 countries, and show that globally, up to 82.9 billion litres of waste paper‐derived cellulosic ethanol can be produced worldwide, replacing 5.36% of gasoline consumption, with accompanying GHG emissions savings of between 29.2% and 86.1%.  相似文献   

5.
Biotechnological production of fuels and chemicals from renewable resources is an appealing way to move from the current petroleum-based economy to a biomass-based green economy. Recently, the feedstocks that can be used for bioconversion or fermentation have been expanded to plant biomass, microbial biomass, and industrial waste. Several microbes have been engineered to produce chemicals from renewable resources, among which Escherichia coli is one of the best studied. Much effort has been made to engineer E. coli to produce fuels and chemicals from different renewable resources. In this paper, we focused on E. coli and systematically reviewed a range of fuels and chemicals that can be produced from renewable resources by engineered E. coli. Moreover, we proposed how can we further improve the efficiency for utilizing renewable resources by engineered E. coli, and how can we engineer E. coli for utilizing alternative renewable feedstocks. e.g. C1 gases and methanol. This review will help the readers better understand the current progress in this field and provide insights for further metabolic engineering efforts in E. coli.  相似文献   

6.
The production of fuels and chemicals from renewable plant biomass has been proposed as a feasible strategy for global sustainable development. However, the economic efficiency of biorefineries is low. Here, through metabolic engineering, Myceliophthora thermophila, a cellulolytic thermophilic fungus, was constructed into a platform that can efficiently convert lignocellulose into important bulk chemicals—four carbon 1, 4-diacids (malic and succinic acid), building blocks for biopolymers—without the need for extra hydrolytic enzymes. Titers of >200 g/L from crystalline cellulose and 110 g/L from plant biomass (corncob) were achieved during fed-batch fermentation. Our study represents a milestone in consolidated bioprocessing technology and offers a new and promising system for the cost-effective production of chemicals and fuels from biomass.  相似文献   

7.

Questions

Fire regime alterations are pushing open ecosystems worldwide past tipping points where alternative steady states characterized by woody dominance prevail. This reduces the frequency and intensity of surface fires, further limiting their effectiveness for controlling cover of woody plants. In addition, grazing pressure (exotic or native grazers) can reinforce woody encroachment by potentially reducing fine-fuel loads. We investigated the effects of different fire energies on the herbaceous plant community, together with mammalian wildlife herbivory (exotic and native combined) exclusion, to inform best management practices.

Location

Texas semi-arid savanna, southern Great Plains, USA.

Methods

We conducted an experiment in which we manipulated fire intensity and herbivore access to herbaceous biomass in a split-plot design. We altered fire energy via fuel addition rather than applying fire under different environmental conditions to control for differences in standing biomass and composition attributable to differential plant physiological status and fire season.

Results

High-energy fire did not reduce herbaceous biomass or alter plant community composition, although it did increase among-plot variability in composition and forb biomass relative to low-energy fire and non-burned controls. Grazing pressure from native and non-native mammalian herbivores reduced above-ground herbaceous biomass regardless of fire treatments, but did not alter community composition.

Conclusions

Managers seeking to apply high-intensity prescribed fire to reduce woody encroachment will not negatively impact herbaceous plant productivity or alter community composition. However, they should be cognizant that repeated fires necessary for greatly reducing woody plants in heavily invaded areas might be difficult to accomplish due to fine-fuel reduction from wild herbivores. High fencing to restrict access by wildlife herbivores or culling might be necessary to build fuels sufficient to conduct high-intensity burns for woody-plant reduction.  相似文献   

8.
Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization ofwastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.  相似文献   

9.
The potential of cellulases and cellulosomes for cellulosic waste management   总被引:15,自引:0,他引:15  
Lignocellulose is the most abundant plant cell wall component of the biosphere and the most voluminous waste produced by our society. Fortunately, it is not toxic or directly harmful, but our major waste disposal facilities--the landfills--are rapidly filling up with few realistic alternatives. Because cellulose is pure glucose, its conversion to fine products or fuels has remained a romantic and popular notion; however, the heterogeneous and recalcitrant nature of cellulosic waste presents a major obstacle for conventional conversion processes. One paradigm for the conversion of biomass to products in nature relies on a multienzyme complex, the cellulosome. Microbes that produce cellulosomes convert lignocelluose to microbial cell mass and products (e.g. ethanol) simultaneously. The combination of designer cellulosomes with novel production concepts could in the future provide the breakthroughs necessary for economical conversion of cellulosic biomass to biofuels.  相似文献   

10.
The global population is expected to increase by approximately 3 billion people by 2050. With this increase in population, industry, transportation the cost of fossil fuels will grow dramatically. New technologies are needed for fuel extraction using feedstocks that do not threaten food security, cause minimal or no loss of natural habitat and soil carbon. At the same time, waste management has to be improved and environmental pollution should be minimized or eliminated. Liquid biofuels such as lignocellulosic‐based ethanol from plant biomass and algal‐based biodiesel are sustainable, alternative biofuels that could stabilize national security and provide clean energy for future generations. Ideally, the technology should also foster recycling of agricultural feedstocks and improve soil fertility and human health. This article provides updated information on the energy potential and breadth of liquid biofuel biotechnology.  相似文献   

11.
Under the current accounting systems, emissions produced when biomass is burnt for energy are accounted as zero, resulting in what is referred to as the ‘carbon neutrality’ assumption. However, if current harvest levels are increased to produce more bioenergy, carbon that would have been stored in the biosphere might be instead released in the atmosphere. This study utilizes a comparative approach that considers emissions under alternative energy supply options. This approach shows that the emission benefits of bioenergy compared to use of fossil fuel are time‐dependent. It emerges that the assumption that bioenergy always results in zero greenhouse gas (GHG) emissions compared to use of fossil fuels can be misleading, particularly in the context of short‐to‐medium term goals. While it is clear that all sources of woody bioenergy from sustainably managed forests will produce emission reductions in the long term, different woody biomass sources have various impacts in the short‐medium term. The study shows that the use of forest residues that are easily decomposable can produce GHG benefits compared to use of fossil fuels from the beginning of their use and that biomass from dedicated plantations established on marginal land can be carbon neutral from the beginning of its use. However, the risk of short‐to‐medium term negative impacts is high when additional fellings are extracted to produce bioenergy and the proportion of felled biomass used for bioenergy is low, or when land with high C stocks is converted to low productivity bioenergy plantations. The method used in the study provides an instrument to identify the time‐dependent pattern of emission reductions for alternative bioenergy sources. In this way, decision makers can evaluate which bioenergy options are most beneficial for meeting short‐term GHG emission reduction goals and which ones are more appropriate for medium to longer term objectives.  相似文献   

12.
Production of biodiesel from edible plant oils is quickly expanding worldwide to fill a need for renewable, environmentally-friendly liquid transportation fuels. Due to concerns over use of edible commodities for fuels, production of biodiesel from non-edible oils including microbial oils is being developed. Microalgae biodiesel is approaching commercial viability, but has some inherent limitations such as requirements for sunlight. While yeast oils have been studied for decades, recent years have seen significant developments including discovery of new oleaginous yeast species and strains, greater understanding of the metabolic pathways that determine oleaginicity, optimization of cultivation processes for conversion of various types of waste plant biomass to oil using oleaginous yeasts, and development of strains with enhanced oil production. This review examines aspects of oleaginous yeasts not covered in depth in other recent reviews. Topics include the history of oleaginous yeast research, especially advances in the early 20th century; the phylogenetic diversity of oleaginous species, beyond the few species commonly studied; and physiological characteristics that should be considered when choosing yeast species and strains to be utilized for conversion of a given type of plant biomass to oleochemicals. Standardized terms are proposed for units that describe yeast cell mass and lipid production.  相似文献   

13.
Biodiesel from microalgae   总被引:27,自引:0,他引:27  
Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Unfortunately, biodiesel from oil crops, waste cooking oil and animal fat cannot realistically satisfy even a small fraction of the existing demand for transport fuels. As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Like plants, microalgae use sunlight to produce oils but they do so more efficiently than crop plants. Oil productivity of many microalgae greatly exceeds the oil productivity of the best producing oil crops. Approaches for making microalgal biodiesel economically competitive with petrodiesel are discussed.  相似文献   

14.
ABSTRACT

Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization of wastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.  相似文献   

15.
The main feedstocks for bioethanol are sugarcane (Saccharum officinarum) and maize (Zea mays), both of which are C(4) grasses, highly efficient at converting solar energy into chemical energy, and both are food crops. As the systems for lignocellulosic bioethanol production become more efficient and cost effective, plant biomass from any source may be used as a feedstock for bioethanol production. Thus, a move away from using food plants to make fuel is possible, and sources of biomass such as wood from forestry and plant waste from cropping may be used. However, the bioethanol industry will need a continuous and reliable supply of biomass that can be produced at a low cost and with minimal use of water, fertilizer and arable land. As many C(4) plants have high light, water and nitrogen use efficiency, as compared with C(3) species, they are ideal as feedstock crops. We consider the productivity and resource use of a number of candidate plant species, and discuss biomass 'quality', that is, the composition of the plant cell wall.  相似文献   

16.
Efficient deconstruction of cellulosic biomass to fermentable sugars for fuel and chemical production is accomplished by a complex mixture of cellulases, hemicellulases, and accessory enzymes (e.g., >50 extracellular proteins). Cellulolytic enzyme mixtures, produced industrially mostly using fungi like Trichoderma reesei, are poorly characterized in terms of their protein composition and its correlation to hydrolytic activity on cellulosic biomass. The secretomes of commercial glycosyl hydrolase-producing microbes was explored using a proteomics approach with high-throughput quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we show that proteomics-based spectral counting approach is a reasonably accurate and rapid analytical technique that can be used to determine protein composition of complex glycosyl hydrolase mixtures that also correlates with the specific activity of individual enzymes present within the mixture. For example, a strong linear correlation was seen between Avicelase activity and total cellobiohydrolase content. Reliable, quantitative and cheaper analytical methods that provide insight into the cellulosic biomass degrading fungal and bacterial secretomes would lead to further improvements toward commercialization of plant biomass-derived fuels and chemicals.  相似文献   

17.
Herbaceous energy crop development: recent progress and future prospects   总被引:2,自引:0,他引:2  
Oil prices and government mandates have catalyzed rapid growth of nonfossil transportation fuels in recent years, with a large focus on ethanol from energy crops, but the food crops used as first-generation energy crops today are not optimized for this purpose. We show that the theoretical efficiency of conversion of whole spectrum solar energy into biomass is 4.6-6%, depending on plant type, and the best year-long efficiencies realized are about 3%. The average leaf is as effective as the best PV solar cells in transducing solar energy to charge separation (ca. 37%). In photosynthesis, most of the energy that is lost is dissipated as heat during synthesis of biomass. Unlike photovoltaic (PV) cells this energetic cost supports the construction, maintenance, and replacement of the system, which is achieved autonomously as the plant grows and re-grows. Advances in plant genomics are being applied to plant breeding, thereby enabling rapid development of next-generation energy crops that capitalize on theoretical efficiencies while maintaining environmental and economic integrity.  相似文献   

18.
This article explores the potential of RFID (radio frequency identification device) for improving the current waste and resource management system in Switzerland. It presents the following three possible options for utilizing RFID tags to support waste management processes: "at source automation" (using a "smart" trash can), "end of pipe I" (combination of the current system with an additional separation of recyclables before incineration), and "end of pipe II" (replacement of the current recycling infrastructure by sorting at the incineration plant). These options tackle the waste and resource management chain during different processes (i.e., waste generation, waste separation, and treatment). Based on an MFA (material flow analysis), we performed a multicriteria assessment of these options with experts from the waste management sector.
The assessment of ten experts in the waste management field regarding the proposed options for batteries and electrical appliances showed that, from an ecological perspective, the implementation of RFID in waste management would be desirable and would lead to an improvement in the current recycling rate in Switzerland for the goods studied. From an economic perspective, new investments would be required in the range of 1 to 5 times the maintenance costs of the current separate collection system. From a social perspective, the utilization of RFID tags in the waste management process was ambiguous. In particular, the end of pipe II option would, on the one hand, significantly improve convenience for consumers. On the other hand, experts see privacy and, what is more, social responsibility as being under threat. The experts considered the ecological and social aspects to be more relevant than the economic ones, preferring the end of pipe I option over the other options and the status quo.  相似文献   

19.
The production of liquid and gaseous fuels and industrial chemicals from selected biomass by a process known as biorefining is reviewed. Four broad categories of biomass appear to be suitable feedstocks: woody biomass and forest residues, agricultural residues, directly fermentable crop-grown biomass, and municipal solid waste and sewage sludge. Through the development of suppressed methane fermentation techniques, it is possible to produce valuable organic chemicals such as acetic acid and ethyl acetate, and liquid fuel (rather than fuel gas) by exercising various processing alternatives. Thus the entire field of methane fermentation has been broadened. In the petroleum refining industry, it is usually desirable to produce from crude oil an optimal mixture of industrial organic chemicals and fuels, a concept known as coproduction. The biorefining process reviewed appears to be adaptable to this same concept of coproduction using biomass as a feedstock.  相似文献   

20.
Referee: Dr. J. Grant McLeod, Semiarid Prairie Agricultural Research Centre, Research Branch, Agriculture and Agri-Food Canada, P.O. Box 1030 Swift Current, Saskatchewan S9H 3X2, Canada According to the European Union, biomass will play a major role in the substitution of fossil fuels with renewable resources. Biomass will contribute 83% to the increased use of renewable resources by the year 2010. In contrast to other solar energy sources, plant biomass is always available and can be converted into energy continuously. An important objective in the production of energy crops on arable farm land should be to realize a high net energy yield and fulfill obligations in the field of environmental protection. The “double cropping system” was developed to meet these obligations. Silaging as a conservation method for wet biomass makes this sustainable cultivation system possible. It includes a diverse array of crops and provides the opportunity to integrate rural organic wastes into this energy concept. The model presented, “the energy self supplying farm”, shows that it is possible to meet the energy consumption requirements of a livestock farming operation with energy crop production on 10 to 18% of the arable farm land. According to a new rape energy concept, a land resource requirement of roughly 10% is feasible if biomass residues from rape oil production for liquid fuels are also utilized for energy production. For a farm with livestock, anaerobic digestion technology is an appropriate technique to deliver heat and electricity for the farmstead. Digestion residues, used as fertilizer in energy crop production, results in an almost complete nutrient recycling. Energy output can be increased above the demand of the farm via the biogas reactor, using the total biomass produced with double cropping. Surplus electricity is supplied to the grid at a guaranteed price. Biomass is a domestic energy resource, and farmers have the chance to extend their function from a supplier of raw material to managers of domestic energy resources. Under the currently established framework, monetary return per hectare could be more than double with biomass energy production via biogas. This will allow the agricultural economy to recover and promote a sustainable regional development. In addition to being a convenient method of waste management, sustainable energy crop production can make a significant contribution to environmental protection and the improvement of the social and economic cohesion within a community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号