首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of mouse lymphocytes with very low concentrations of alamethicin or Lubrol PX induces spontaneous permeabilization of the plasma membrane to ATP and allows determination of adenylate cyclase activity in whole cells. The permeabilized cells retain responsiveness to hormones (isoproterenol, adenosine analogs) and to fluoride. The main advantage of this new method is that it does not require any homogenization step, and thus adenylate cyclase activities can be accurately and reproducibly measured with very low amounts of cells. It should be especially useful for the study of purified lymphocyte subpopulations.  相似文献   

2.
LLC-PK1L cells, a kidney-derived cell line, had sustained growth in a defined medium. When compared to the parent cell line growing with 10% fetal bovine serum, LLC-PK1L cells had about 100-times fewer vasopressin receptors. Upon modifications of the cell culture medium, the vasopressin response of the adenylate cyclase could be increased by more than 10-fold with a parallel increase in vasopressin receptor number. Using cells with high or low receptor densities, the stimulatory and inhibitory effects of N6-L-2-phenylisopropyl-adenosine on the modulation of the adenylate cyclase responsiveness to vasopressin were investigated. When high concentrations of GTP were added, low concentrations of phenylisopropyladenosine inhibited the enzyme, while higher concentrations were found to be stimulatory. The adenylate cyclase activity stimulated by vasopressin could only be inhibited by phenylisopropyladenosine under these conditions in membranes with high receptor density; only the increase in enzyme activity due to high GTP concentration was inhibitable. The analysis of the dependency of the adenylate cyclase activity as a function of the vasopressin concentration showed that, besides reducing the maximum velocity of the system for vasopressin, the addition of phenylisopropyladenosine generated an heterogeneity in the adenylate cyclase response to vasopressin (as judged by a curvilinear Eadie plot). A high-affinity component in the adenylate cyclase response appeared when phenylisopropyladenosine was added. The growth of the cells in a medium containing adenosine deaminase gave results identical to those obtained for control cells. However, growing the cells with both phenylisopropyladenosine and adenosine deaminase abolished the inhibitory effects of the former on the adenylate cyclase and greatly reduced its stimulatory action. Under these conditions, the vasopressin response of the adenylate cyclase was not further regulated by phenylisopropyladenosine. These results indicate a role of adenosine on vasopressin response, especially at low physiological concentrations of the hormone where a high-affinity component of the hormonal response could be demonstrated.  相似文献   

3.
Guanine nucleotide regulation of membrane adenylate cyclase activity was uniquely modified after exposure of 3T3 mouse fibroblasts to low concentrations of islet-activating protein (IAP), pertussis toxin. The action of IAP, which occurred after a lag time, was durable and irreversible, and was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. GTP, but not Gpp(NH)p, was more efficient and persistent in activating adenylate cyclase in membranes from IAP-treated cells than membranes from control cells. GTP and Gpp(NH)p caused marked inhibition of adenylate cyclase when the enzyme system was converted to its highly activated state by cholera toxin treatment or fluoride addition, presumably as a result of their interaction with the specific binding protein which is responsible for inhibition of adenylate cyclase. This inhibition was totally abolished by IAP treatment of cells, making it very likely that IAP preferentially modulates GTP inhibitory responses, thereby increasing GTP-dependent activation and negating GTP-mediated inhibition of adenylate cyclase.  相似文献   

4.
Clofibrate (Atromid-S), nicotinic acid, and insulin are known to be potent hypolipidemic and antilipolytic agents. The present study was undertaken to define the mechanism of action of this latter effect on isolated rat and human fat cells. Sodium clofibrate (0.42 mM), nicotinic acid (0.42 mM), and insulin (100 microU/mL) were shown to inhibit norepinephrine-stimulated lipolysis in rat and human adipose cells and this inhibition was associated with a reduction in intracellular 3',5'-cyclic AMP levels. A similar cyclic AMP lowering effect was demonstrated with insulin in the presence of procaine-HCL, which uncouples the adenylate cyclase system from lipolysis. This insulin effect was attributed to inhibition of adenylate cyclase. A direct and significant inhibition of adenylate cyclase in membrane fractions obtained from isolated human adipocytes was demonstrated for all three antilipolytic agents. The common membrane site of action of these agents whereby adenylate cyclase activity is depressed, thus decreasing cyclic AMP production and free fatty acid (FFA) mobilization from adipose stores, implies a central role for the adenylate cyclase system. These findings are consistent with the view that the hypotriglyceridemic effects of clofibrate, nicotinic acid, and insulin may be partly explained by deprivation of FFA substrate for hepatic very low density lipoprotein synthesis.  相似文献   

5.
Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cells containing normal activities of the phosphotransferase system enzymes. In contrast, phosphoenolpyruvate could not overcome the inhibitory effect of this sugar in strains deficient for enzyme I or HPr. Although the in vivo sensitivity of adenylate cyclase to inhibition correlated with sensitivity of carbohydrate permease function to inhibition in most strains studied, a few mutant strains were isolated in which sensitivity of carbohydrate uptake to inhibition was lost and sensitivity of adenylate cyclase to regulation was retained. These results are consistent with the conclusions that adenylate cyclase and the carbohydrate permeases were regulated by a common mechanism involving phosphorylation of a cellular constituent by the phosphotransferase system, but that bacterial cells possess mechanisms for selectively uncoupling carbohydrate transport from regulation.  相似文献   

6.
Plasma membranes were prepared after density gradient separation of erythroid cells obtained from bled animals. In a fraction enriched in young reticulocytes (lowest density), the basal and the prostaglandin stimulated adenylate cyclase were greatly augmented if compared with the membranes from unfractionated cells or from the layers of higher densities. Potentiation by GTP or soluble factor(s) of the prostaglandin stimulated adenylate cyclase was found solely in the fractions containing the youngest cells (lowest density). A very significant augmentation of both the basal and the effectors stimulated adenylate cyclase was obtained when the white blood cells and the platelets were removed by filtration through alpha-cellulose prior to density separation. A small population of probably very young reticulocytes was shown to contain a very active adenylate cyclase coupled to the hormonal receptor. Upon short time of maturation this coupling could no longer be detected. The cAMP generated in the fraction enriched in young reticulocytes increased the phosphorylation of some membrane proteins. The presence of a hormonally regulated adenylate cyclase and eventually the phosphorylation of some specific membrane proteins by the cAMP generated in situ permit to envisage possible functions of this system in young reticulocytes.  相似文献   

7.
The activity of adenylate cyclase of Escherichia coli measured in toluene-treated cells under standard conditions is subject to control by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Sugars such as glucose, which are transported by the PTS, will inhibit adenylate cyclase provided the PTS is functional. An analysis was made of the properties of E. coli strains carrying mutations in PTS proteins. Leaky mutants in the PTS protein HPr are similar to wild-type strains with respect to cAMp regulation; adenylate cyclase activity in toluene-treated cells and intracellular cAMP levels are in the normal range. Furthermore, adenylate cyclase in toluene-treated cells of leaky HPr mutants is inhibited by glucose. In contrast, mutations in the PTS protein Enzyme I result in abnormalities in cAMP regulation. Enzyme I mutants generally have low intracellular cAMP levels. Leaky Enzyme I mutants show an unusual phosphoenolpyruvate-dependent activation of adenylate cyclase that is not seen in Enzyme I+ revertants or in Enzyme I deletions. A leaky Enzyme I mutant exhibits changes in the temperature-activity profile for adenylate cyclase, indicating that adenylate cyclase activity is controlled by Enzyme I. Temperature-shift studies suggest a functional complex between adenylate cyclase and a regulator protein at 30 °C that can be reversibly dissociated at 40 °C. These studies further support the model for adenylate cyclase activation that involves phosphoenolpyruvate-dependent phosphorylation of a PTS protein complexed to adenylate cyclase.  相似文献   

8.
Activation of adenylate cyclase in cultured fibroblasts by trypsin   总被引:5,自引:0,他引:5  
Adenylate cyclase activity measured in membranes of cultured normal rat kidney (NRK) fibroblasts was markedly increased by prior treatment of the intact cells with trypsin. Cell population density influenced the extent of activation observed. Trypsin treatment of sparse cells significantly enhanced adenylate cyclase activity, whereas similar treatment of confluent cells caused only a slight increase in adenylate cyclase activity. The degree of activation noted after trypsin treatment also varied depending on the adenylate cyclase function measured. Activity determined in the presence of GTP alone showed the greatest increase after trypsin treatment. Similar enhancement of adenylate cyclase activity of a washed cell membrane preparation was achieved by the addition of low concentrations of trypsin directly to the adenylate cyclase reaction mixture. The membranes of confluent NRK fibroblasts initially exhibited higher adenylate cyclase activity than did membranes of sparse cells. The present results suggest that this change in adenylate cyclase activity at cell confluence is not due to an increase in the amount of adenylate cyclase in the cell membrane but rather to a change in membrane components that regulate its activity. Proteolytic activation of adenylate cyclase appears to result from degradation of cell membrane proteins that modulate the activity of this enzyme.  相似文献   

9.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.  相似文献   

10.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

11.
The existence of adenosine receptors coupled to adenylate cyclase in cultured vascular smooth muscle cells from rat aorta is demonstrated in these studies. Adenosine, N6-phenylisopropyladenosine, adenosine N′-oxide and 2-chloroadenosine stimulated adenylate cyclase in a concentration dependent manner. The stimulation was dependent on the presence of guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine. In contrast, 2′ deoxyadenosine inhibited adenylate cyclase activity. Adenosine and 2-chloroadenosine showed a biphasic effect on adenylate cyclase, stimulation occurred at low concentrations. The activation of adenylate cyclase by N6-phenylisopropyladenosine was also dependent on the Mg2+ concentration. The data suggest that vascular smooth muscle cells have both “Ra” and “P” receptors for adenosine, and it can be postulated that the relaxant effect of adenosine on vascular smooth muscle may be mediated by its interaction with “Ra” receptors associated with adenylate cyclase.  相似文献   

12.
A comparative study of thyroid hormone responsive membrane adenylate cyclase activity has been carried out on normal (Hb-AA) and sickle cell (Hb-SS) subjects. Thyroid hormones (T3 and T4) and selected analogues (TRIAC and DLT) enhanced adenylate cyclase activity in Hb-AA membranes. The interaction of Hb-SS membranes with the hormones and analogues was not significant except for T3 which moderately stimulated Hb-SS membrane adenylate cyclase. We suggest that circulating irreversibly sickled cells, in view of their membrane phospholipid defect, probably contribute to the low response of membrane adenylate cyclase to effector stimulation.  相似文献   

13.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

14.
The ultrastructural localization of adenylate cyclase was studied in bovine cumulus-oocyte complexes. Adenylate cyclase was observed on the plasma membrane of the oocyte and occasionally on the plasma membrane of cumulus cells. The cytochemical observations presented demonstrate that there is more adenylate cyclase in cumulus-oocyte complexes after in vitro stimulation with forskolin. The presence of adenylate cyclase upon the oocyte was more pronounced. In addition adenylate cyclase appeared to be localized on the cumulus cells, especially between junctional complexes of cumulus cells and on cumulus cell processes contacting the oocyte. The cumulus cells never showed the presence of adenylate cyclase in the absence of forskolin. No changes in the presence of adenylate cyclase were observed during in vitro meiotic maturation.  相似文献   

15.
Extracellular cAMP induces excitation of adenylate and guanylate cyclase in Dictyostelium discoideum. Continuous stimulation with cAMP leads to adaptation, while cells deadapt upon removal of the cAMP stimulus. Excitation of guanylate cyclase by cAMP has a lag time of approximately 1 s; excitation of adenylate cyclase is much slower with a lag time of 30 s. Excitation of both enzyme activities is less than twofold slower at 0 degrees C than at 20 degrees C. Adaptation of guanylate cyclase is very fast (t1/2 = 2.4 s at 20 degrees C), and virtually absent at 0 degrees C. Adaptation of adenylate cyclase is much slower (t1/2 = 110 s at 20 degrees C) but not very temperature sensitive (t1/2 = 290 s at 0 degrees C). At 20 degrees C, deadaptation of adenylate cyclase is about twofold slower than deadaptation of guanylate cyclase (t1/2 = 190 and 95 s, respectively). Deadaptation of adenylate cyclase is absent at 0 degrees C, while that of guanylate cyclase proceeds slowly (t1/2 = 975 s). The results show that excitation, adaptation, and deadaptation of guanylate cyclase have different kinetics and temperature sensitivities than those of adenylate cyclase, and therefore are probably independent processes.  相似文献   

16.
Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells   总被引:22,自引:0,他引:22  
In neuroblastoma-glioma (NG108-15) hybrid cells, opiates inhibit adenylate cyclase and stimulate a low Km GTPase. It has been postulated that the stimulation of GTPase plays a role in opiate inhibition of adenylate cyclase (Koski, G., and Klee, W. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4185-4189). Treatment of NG108-15 cells with pertussis toxin attenuates receptor-mediated inhibition of adenylate cyclase. The toxin acts by catalyzing the ADP-ribosylation of a 41,000-dalton substrate believed to be a part of the receptor-adenylate cyclase complex. We have found that toxin treatment of NG108-15 results in inhibition of the opiate-stimulated GTPase. The concentration of toxin required for inhibition of this GTPase was similar to that needed for both attenuation of opiate inhibition of adenylate cyclase and ADP ribosylation of the 41,000-dalton substrate. Inhibition of the opiate-induced GTPase by pertussis toxin in isolated membranes required NAD, consistent with the hypothesis that this effect of the toxin resulted from ADP ribosylation of a protein component of the system. Since the opiate-stimulated GTPase is believed to play a role in the receptor-mediated decrease in adenylate cyclase activity, inhibition of this GTPase may be an important part of the mechanism by which the toxin interferes with opiate action on adenylate cyclase.  相似文献   

17.
Basal adenylate cyclase activity in rat lung homogenate was low prenatally but increased several-fold after birth and remained elevated to maturity. The results also demonstrate the appearance of some factor(s) in the lung cytoplasm at a certain age which markedly activated adenylate cyclase. During late gestation and early neonatal life, when the cytoplasmic factor(s) was low or absent, basal adenylate cyclase activity was low and norepinephrine and NaF produced maximum activation of the enzyme. However, when the cytoplasmic factor(s) appeared in the adult lungs, basal adenylate cyclase activity was elevated and both norepinephrine and NaF produced little or no activation of the enzyme. These data suggest a role for the cytoplasmic factor(s) in regulating rat lung adenylate cyclase. The cytoplasmic factor(s) appeared to be a protein since it was inactivated by trypsin digestion and by heating to 75 degrees C. Activation of adenylate cyclase was not due to small ions or other low molecular weight components of the cytoplasm as dialysis of the supernatant did not alter its activation of adenylate cyclase. The cytoplasmic factor(s) did not appear to be either GTP or calcium-dependent regulator of cyclic AMP phosphodiesterase as these did not activate the rat lung adenylate cyclase.  相似文献   

18.
In Dictyostelium discoideum cells the enzyme adenylate cyclase is functionally coupled to cell surface receptors for cAMP. Coupling is known to involve one or more G-proteins. Receptor-mediated activation of adenylate cyclase is subject to adaptation. In this study we employ an electropermeabilized cell system to investigate regulation of D. discoideum adenylate cyclase. Conditions for selective permeabilization of the plasma membrane have been described by C.D. Schoen, J. C. Arents, T. Bruin, and R. Van Driel (1989, Exp. Cell Res. 181, 51-62). Only small pores are created in the membrane, allowing exchange of exclusively low molecular weight substances like nucleotides, and preventing the loss of macromolecules. Under these conditions functional protein-protein interactions are likely to remain intact. Adenylate cyclase in permeabilized cells was activated by the cAMP receptor agonist 2'-deoxy cAMP and by the nonhydrolyzable GTP-analogue GTP gamma S, which activates G-proteins. The time course of the adenylate cyclase reaction in permeabilized cells was similar to that of intact cells. Maximal adenylate cyclase activity was observed if cAMP receptor agonist or GTP-analogue was added just before cell permeabilization. If these activators were added after permeabilization adenylate cyclase was stimulated in a suboptimal way. The sensitivity of adenylate cyclase activity for receptor occupation was found to decay more rapidly than that for G-protein activation. Importantly, the adenylate cyclase reaction in permeabilized cells was subject to an adaptation-like process that was characterized by a time course similar to adaptation in vivo. In vitro adaptation was not affected by cAMP receptor agonists or by G-protein activation. Evidently electropermeabilized cells constitute an excellent system for investigating the positive and negative regulation of D. discoideum adenylate cyclase.  相似文献   

19.
Cytochemical techniques have been employed to study the localization of adenylate cyclase and (Ca2+ + Mg2+)-stimulated ATPase activities in platelets after fixation. Biochemical analysis of adenylate cyclase demonstrated a 70% reduction in activity in homogenates from fixed cells, but the residual activity could be stimulated 10--20 times by prostaglandin E1 (1 micrometer) under the same incubation conditions as employed in the cytochemical studies (e.g. media containing 2 mM lead nitrate and 10 mM NaF). Adenylate cyclase activity employing 5'-adenylyl-imiodiphosphate (AMP-P(NH)P) as substrate was found to be associated with the dense tubular system (smooth endoplasmic reticulum) in intact fixed platelets, and was apparent only when the cells were incubated with prostaglandin E1. Less activity was found along the membranes of the surface connected open canalicular system and occasionally at the outer cell surface. Enzymatic activity was blocked by the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl) adenine and was not due to AMP-P(NH)P phosphohydrolase activity. The low adenylate cyclase activity in the surface membranes may be due to enzyme inactivation as a result of fixation, since a surface membrane fraction obtained by the glycerol lysis technique from unfixed cells had an adenylate cyclase specific activity equivalent to that in the microsomal membrane fraction. (Ca2+ + Mg2+)-stimulated ATPase activity was found associated with the membranes of the surface connected open canalicular system in unfixed cells. After brief fixation (5--15 min) with glutaradehyde, strong (Ca2+ + Mg2+)ATPase activity became apparent in the dense tubular system. Longer periods of fixation inactivated enzymatic activity. Addition of Ca2+ (1.0 mM) to incubation medium with low Mg2+ (0.2 mM), or increasing Mg2+ to 4.0 mM, in both cases strongly stimulated enzyme activity. The ATPase activity in the platelet membranes was not inhibited by ouabain. It is suggested that the Ca2+-stimulated ATPase and adenylate cyclase activities in the dense tubules may possibly be involved in regulation of intracellular Ca2+ transport.  相似文献   

20.
Calmodulin regulation of adenylate cyclase activity   总被引:8,自引:0,他引:8  
Calmodulin-dependent stimulation of adenylate cyclase was initially thought to be a unique feature of neural tissues. In recent years evidence to the contrary has accumulated, calmodulin-dependent stimulation of adenylate cyclase now being demonstrated in a wide range of structurally unrelated tissues and species. Demonstration of the existence of calmodulin-dependent adenylate cyclase has in nearly all instances required the removal of endogenous calmodulin. It is not yet clear whether calmodulin-dependent and calmodulin-independent forms of the enzyme exist and whether some tissues (such as heart) lack a calmodulin-dependent adenylate cyclase. The presence of calmodulin appears largely responsible for the ability of the adenylate cyclase enzyme to be stimulated by submicromolar concentrations of calcium; it may not be relevant to the inhibition of the enzyme which occurs at higher concentrations of calcium. The physical relationship of calmodulin to the plasma membrane bound enzyme (or to the soluble forms of the enzyme) is not known nor is the mechanism of adenylate cyclase activation by calmodulin clear; current data suggest some involvement with both the N and C units of the enzyme. Finally, it is possible that in vivo calcium contributes to the duration of the hormone stimulated cyclic AMP signal. Thus current in vitro data suggest that optimal hormonal activation of calmodulin-dependent adenylate cyclase occurs at very low intracellular calcium concentrations, comparable to those found in the resting cell; conversely the enzyme is inhibited as intracellular calcium increases, following for example agonist stimulation of the cell. These higher calcium concentrations would then activate calmodulin-dependent phosphodiesterase. Such differential effects of calcium on adenylate cyclase and phosphodiesterase would ultimately restrict the duration of the hormone-induced cyclic AMP signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号