首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the effects of concanavalin A on insulin binding to R323AC mammary carcinomas, initial experiments were performed to characterize binding of concanavalin A. Concanavalin A binding was found to be specific and saturable. Equilibrium binding experiments demonstrated that addition of low concentration of concanavalin A enhanced the binding of [3H]concanavalin A, suggestive of positively cooperative interactions. Binding of concanavalin A was responsive to hormonal alterations; tumor cells from diabetic rats showed enhanced binding of concanavalin A and insulin compared to cells from intact rats and administration of insulin to diabetic rats returned concanavalin A and insulin binding to levels seen in controls. Incubation of tumor cells with concanavalin A prior to addition of 125I-labelled insulin resulted in a reduction of insulin-binding capacity; succinyl-concanavalin A did not affect binding of insulin. The percent inhibition of insulin binding by concanavalin A was highest at the lower insulin concentrations, providing a linearized Scatchard plot that yielded a calculated Kd value comparable to the low-affinity portion of the curvilinear Scatchard plot for insulin binding. The dissociation rate of bound insulin depended on receptor occupancy. Addition of concanavalin A after insulin binding reached equilibrium resulted in increased insulin binding hormone concentrations, decreased rates of dissociation of insulin and a loss of the correlation between receptor occupancy and dissociation rates. Concanavalin A alone demonstrated an insulin-like effect on glucose transport, which in these tumor cells represents a decrease in transport of 3-O-methylglucose. These suggest that binding of both concanavalin A and insulin to cells from this hormonally responsive neoplasm is under insulin regulation and demonstrates similar characteristics to those reported for a variety of normal cells. Furthermore, the interaction between concanavalin A and the cell membranes affects the affinity of the insulin receptor for insulin and appears to decrease the observed negative cooperativity.  相似文献   

2.
Purified plasma membrane vesicles isolated from R3230AC rat mammary tumors displayed carrier-mediated and stereospecific uptake. Uptake was shown to be proportional to protein concentration, sensitive to increasing osmolarity, and inhibited only by substrates entering by the same carrier. Carrier-mediated glucose uptake was inhibited rapidly by estradiol-17β and phloretin in a dose-dependent manner, whereas proline uptake was not affected by estradiol-17β. The data suggest that the inhibition of glucose by estradiol and phloretin, originally observed in whole cells, occurs by an interaction of the steroid with a component on the plasma membrane. In contrast, the lack of effects of estradiol on proline transport into vesicles implies that intracellular components may have mediated the estrogen-induced effects observed in whole cells.  相似文献   

3.
Cells dissociated from the R3230AC mammary adenocarcinoma from intact and diabetic rats were examined for insulin binding and glucose transport. The Kd for insulin binding, ~ 10?10 M, was similar in all tumors studied. However, the apparent number of receptor sites per cell increased in cells from diabetic rats. Kinetic analysis of 3-0-methyl glucose (3-OMG) entry showed both diffusional and passive carrier characteristics. Insulin (4 × 10?9 M) in vitro did not affect diffusional entry, whereas the hormone altered the passive carrier system, as reflected by an increase in Km and Vmax. Insulin decreased initial velocity of glucose transport at 4–6 mM glucose levels but increased initial velocity of glucose transport at 20 mM glucose. An explanation of the role of insulin on tumor growth in vivo from effects on glucose transport in vitro is proposed.  相似文献   

4.
Interactions of concanavalin A with human erythrocytes were studied using 125I-labelled concanavalin A and a centrifugal technique with dibutyl phthalate which permitted complete separation of bound and free concanavalin A. Binding of 125I-labelled concanavalin A to human erythrocytes was dependent on cell concentration, pH and temperature. Specificity of binding was confirmed by inhibition and dissociation studies with sugars and native concanavalin A. Positive cooperative binding of concanavalin A to human erythrocytes was observed at low concanavalin A concentrations (less than 1 μ/ml) in both buffers studied. Positive cooperativity at higher concanavalin A concentrations (more than 100 μ/ml) was seen in Tris-Hepes buffer but not in phosphate-buffered saline. Consistent with this cooperative effect was the observation that although dissociation of 125I-labelled concanavalin A from the erythrocytes was complete in the presence of 1 mg/ml of the native lectin, release was inhibited by low concentrations (1 μ/ml). A comparison of concanavalin A binding with hemagglutination studies suggest that the amount of concanavalin A bound determines the rate of erythrocyte agglutination and the size of the aggregates formed.  相似文献   

5.
Dissociated cells of the R3230AC mammary tumor were found to take up glucose by diffusion and by a passive carrier system. Using labeled 3-O-methylglucose as the probe, the following properties of the passive carrier were identified: (1) specificity for glucose, (2) competition by galactose and mannose but not by mannitol and fructose, (3) inhibition by phloretin but not by phloridzin, (4) temperature sensitivity, and (5) a Km for transport of 3-4 mM. The effects of insulin in vitro on carrier-mediated glucose transport were investigated in tumor cells from diabetic rats. At 10-9 M insulin, a time-related decrease in v for transport was observed resulting in an increased calculated Km (2- to 3-fold increase after 60-90 min incubation with insulin); only slight effects on V were obtained. This unusual response in v to insulin was observed when glucose was present in the medium at 2 mM and 5 mM, but not at 20 mM glucose. The effect of insulin to decrease the v was dose-related, with the major effects seen between 10-10M and 10-8M. The apparent decrease in glucose entry in vitro may in part explain the ability of insulin to inhibit growth of this tumor in vivo.  相似文献   

6.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

7.
The effects of diabetes and insulin administration on certain aspects of phosphoinositide metabolism in R3230AC mammary tumors were studied in vivo. Three weeks after diabetes was induced by streptozotocin, [3H]myoinositol incorporation into PI, PIP and PIP2 was increased in R3230AC tumors, whereas the formation of [3H]IP, [3H]IP2 and [3H]IP3 was decreased. Administration of protamine zinc insulin (3IU, twice daily, for 3 days) to diabetic rats decreased [3H]myoinositol incorporation into phosphoinositides and inositol phosphates in these mammary tumors. The R3230AC tumor from insulin-treated diabetic hosts had lower levels of unmetabolized [3H]-myoinositol compared to tumors from diabetic animals. Enzymatically-dissociated tumor cells from insulin-treated animals displayed decreased myoinositol transport in vitro. These findings suggest that the insulin-induced decrease in the turnover of inositol lipids in vivo in R3230AC mammary tumors could have resulted from the decreased level of [3H]myoinositol in these cells.  相似文献   

8.
A procedure for preparing basolateral membrane vesicles from rat renal cortex was developed by differential centrifugation and Percoll density gradient centrifugation, and the uptake of d-[3H]glucose into these vesicles was studied by a rapid filtration technique. (Na+ + K+)-ATPase, the marker enzyme for basolateral membranes, was enriched 22-fold compared with that found in the homogenate. The rate of d-glucose uptake was almost unaffected by Na+ gradient (no overshoot).  相似文献   

9.
In chicken thymocytes isolated from 15–40 day-old chickens, after a 2 h incubation at 37°C, insulin stimulated amino isobutyric acid uptake (maximal response: 40–50% of increase at 1 μg insulin/ml and half maximal response at 60 ng/ml) by specifically stimulating the influx without altering the efflux. Insulin also stimulated glucose oxidation (maximal response: 11% of increase at 1 μg insulin/ml). Binding of 125I-labelled chicken insulin to thymocytes was rapid and higher at 15°C than at 37°C. At steady state, (90 min at 15°C), chicken, porcine and goose insulins were equipotent in inhibiting the binding of 125I-labelled chicken insulin. Maximal binding capacity was estimated at 1250 pg insulin/108 cells, i.e., 1250 binding sites/cell with an apparent dissociation constant of 200 ng insulin/ml at 15°C. Degradation of 125I-labelled chicken insulin in the incubation medium was negligible at 15°C but very noticeable at 37°C. Therefore, the low level of insulin binding at 15°C reflects a true scarcity of insulin receptors in chicken thymocytes as compared to rat thymocytes.  相似文献   

10.
Purified plasma membrane vesicles isolated from R3230AC rat mammary tumors displayed carrier-mediated and stereospecific uptake. Uptake was shown to be proportional to protein concentration, sensitive to increasing osmolarity, and inhibited only by substrates entering by the same carrier. Carrier-mediated glucose uptake was inhibited rapidly by estradiol-17 beta and phloretin in a dose-dependent manner, whereas proline uptake was not affected by estradiol-17 beta. The data suggest that the inhibition of glucose by estradiol and phloretin, originally observed in whole cells, occurs by an interaction of the steroid with a component on the plasma membrane. In contrast, the lack of effects of estradiol on proline transport into vesicles implies that intracellular components may have mediated the estrogen-induced effects observed in whole cells.  相似文献   

11.
The effects of islet-activating protein (IAP), a Bordetella pertussis toxin, on insulin- and isoprenaline-stimulated glucose transport were studied in isolated rat adipocytes. Basal as well as insulin-stimulated glucose transport were not affected when cells were pretreated with IAP. In contrast, IAP pretreatment abolished the stimulatory effect of isoprenaline. When IAP-pretreated cells were exposed to a combination of insulin and isoprenaline, the catecholamine significantly reduced the stimulatory effect of insulin. Since IAP is supposed to specifically block the inhibitory component Ni of adenylate cyclase, the results suggest that: (a) the effect of insulin is unrelated to the regulation of adenylate cyclase; (b) isoprenaline may exert both stimulatory and inhibitory effects depending on activation of Ni. The inhibitory regulation of adenylate cyclase may thus be a pivotal link in the regulation of glucose transport.  相似文献   

12.
A procedure for preparing highly purified brush border membranes from rabbit kidney cortex using differential and density gradient centrifugation is described. Brush border membranes prepared by this procedure were substantially free of basal-lateral membranes, mitochondria, endoplasmic reticulum and nuclear material as evidenced by an enrichment factor of less than 0.3 for (Na+ + K+)-ATPase, succinate dehydrogenase, NADPH-cytochrome c reductase and DNA. Alkaline phosphatase was enriched ten fold indicating that the membranes were enriched at least 30 fold with respect to other cellular organelles. The yield of brush border membranes was 20%.Transport of d-glucose by the membranes was identical to that previously reported except that the Arrhenius plot for temperature dependence of transport was curvilinear (EA = 11.3–37.6 kcal/mol) rather than biphasic. Transport of p-aminohippuric acid and uric acid were increased by the presence of NaCl, either gradient or preequilibrated. However, no overshoot was obtained in the presence of a NaCl gradient, and KCl and LiCl also produced equivalent stimulation of transport suggesting a nonspecific ionic strength effect. Uptakes of p-aminohippuric acid and uric acid were not saturable, and were increased markedly by reducing the pH from 7.5 to 5.6. Probenecid (1 mM) reduced p-aminohippuric acid and uric acid (50 μM) uptake by 49% and 21%, respectively. We conclude that the uptake of uric acid and p-aminohippuric acid by renal brush border membranes of the rabbit occurs primarily by a simple solubility-diffusion mechanism.  相似文献   

13.
Regulation of A system amino acid transport was studied in primary cultures of the R3230AC mammary adenocarcinoma. Higher rates of carrier-mediated Na+-dependent proline transport, vc, was decreased and was attributed to a two-fold decrease in Vmax and a two-fold increase in Km. When compared to cells grown in standard media (Eagle's minimal essential medium, MEM), cells grown in media supplemented with A system substrates (alanine, serine, glycine, and proline) demonstrated adaptive decreases in proline transport; the decrease was due to two-fold reduction in Vmax, with no change in Km for proline. Even in the presence of preferred substrates for the A system, a density-dependent decrease in proline transport was manifested. Both fast- and slow-growing cultures maintained in MEM exhibited rapid increases in proline transport when switched to buffers devoid of amino acids; two-fold increases in Vmax were seen within 4 hr, but Km was unchanged. This starvation-induced adaptation was completely prevented by inclusion in the buffer of 10 mM proline, 0.1 mM -(methylamino)-isobutyric acid (MetAIB) or 10 mM serine, whereas inclusion of the poorer A system substrate, phenylalanine (10 mM), had no effect. The effects of MetAIB to prevent starvation-induced increases in proline transport were dose-related, rapid, and reversible. Amino acid starvation-induced increases in proline transport were partially blocked by cycloheximide or actinomycin D. Data were obtained demonstrating a temporal relationship between increasing intracellular [proline] and decreasing vc for proline uptake. In addition, efflux of proline from preloaded cells preceded the increase in initial rates of proline entry. Taken together, we concluded that: (1) A system transport in primary cultures of this mammary adenocarcinoma is regulated by cell density as well as by availability of A system substrates, but these two types of regulation are kinetically distinct; and (2) starvation-induced enhancement of proline transport appears to be due to release from transinhibition, but may also involve a derepression-repression type of mechanism.  相似文献   

14.
15.
An epithelial cell line established from a Chinese hamster kidney, CHK-ACE, was separated into two sublines, CHK-ACE-100 and CHK-ACE-400, by 18 successive passages in medium containing 100 and 400 mg/dl glucose, respectively. Binding of CHK-ACE-100 and CHK-ACE-400 cells to 125I-labeled insulin showed similar pH and time dependency; 125I-labeled insulin binding as a function of insulin concentration differed in the two sublines, however. Degradation of 125I-labeled insulin, as determined by its ability to bind insulin antibody and cells, was more extensive when preincubated with CHK_ACE-400 cells than with CHK-ACE-100 cells. When CHK-ACE-100 cells were grown in 400 mg/dl glucose for six passages, these cells showed more insulin binding sites than cells grown parallel in 100 mg/dl glucose; whereas CHK-ACE-400 cells grown in 100 mg/dl glucose for six passages showed fewer insulin binding sites than those grown parallel in 400 mg/dl glucose. A slight increase in Kf/Ke ratio was observed in both sublines when grown in 400 mg/dl glucose as compared to 100 mg/dl glucose, indicating attenuated negative cooperativity of the binding sites in cells grown in 400 mg/dl glucose. Tunicamycin, at concentrations from 0.016 to 0.125 μg/ml, showed no direct effect on the assay of 125I-labeled insulin binding to CHK-ACE-100 cells; exposure of CHK-ACE-100 cells to tunicamycin, at concentrations from 0.01 to 0.2 μg/ml, for 24 h caused a dose-dependent decrease in insulin binding capacity and an increase in Kf/Ke ratio. These data indicate that the number of insulin binding sites in the cultured Chinese hamster kidney epithelial cells increased with high glucose concentrations in the culture medium, whereas tunicamycin, an inhibitor of protein glycosylation, lowered the number of insulin binding sites.  相似文献   

16.
17.
[3H]Cytochalasin B binding and its competitive inhibition by d-glucose have been used to identify the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for d-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the d-glucose-inhibitable site. If 280 nM (40 000 μunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of d-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

18.
The presence of muscarinic receptors in islets of Langerhans was assessed by measurement of specific binding of [3H]methylscopolamine. Specific binding was defined as total binding minus binding obtained in the presence of 1000-fold or higher excess of unlabeled methylscopolamine. At 37°C specific binding was significant after 1 min and plateaued after 10 min of incubation. Displacement of label by increasing concentrations of unlabeled methylscopolamine indicated a dissociation constant of 1.5·10?12 M. Effects of methylscopolamine on insulin release were evaluated from the inhibitions of cholinergic-induced insulin release. 4·10?10 M methylscopolamine inhibited acetylcholine (20 μM)-induced insuliln release more than 60%. Binding was not influenced by the following variations during binding incubations: changing the glucose concentration from 0 to 83 mM, adding rotenon (1 μM) or omitting calcium from the incubation medium. Islets kept in tissue culture exhibited higher binding when cultured at 11.1 than at 3.3 mM glucose for 96 h. It is concluded that islets contain muscarinic receptors, the binding to which can be subject to alteration by the long-term glucose environment.  相似文献   

19.
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37°C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37°C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20–30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16°C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling.  相似文献   

20.
A study has been carried out into the effects of clinically important general anaesthetics, althesin, thiopentone and propanidid, on the transport of glucose and phosphate across the membrane of the human erythrocyte. In general these three substances all inhibit both transport processes but with characteristic inhibition profiles and varying degrees of efficacy. Glucose transport was more sensitive to the hydrophobic steroids and phosphate transport to propanidid. Some hydrophobic agents, e.g., iodobenzene and its azide, were not inhibitory. Removal of cholesterol to some extent augmented the inhibitory effects of most of these compounds (not propanidid). It is argued that these effects are due to the penetration of the anaesthetics into the lipid bilayer and either subsequent disruption of the lipid annuli surrounding the integral membrane proteins and/or direct anaesthetic-protein interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号