首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Averaged across many previous investigations, doubling the CO2 concentration ([CO2]) has frequently been reported to cause an instantaneous reduction of leaf dark respiration measured as CO2 efflux. No known mechanism accounts for this effect, and four recent studies have shown that the measurement of respiratory CO2 efflux is prone to experimental artifacts that could account for the reported response. Here, these artifacts are avoided by use of a high-resolution dual channel oxygen analyzer within an open gas exchange system to measure respiratory O2 uptake in normal air. Leaf O2 uptake was determined in response to instantaneous elevation of [CO2] in nine contrasting species and to long-term elevation in seven species from four field experiments. Over six hundred separate measurements of respiration failed to reveal any decrease in respiratory O2 uptake with an instantaneous increase in [CO2]. Respiration was found insensitive not only to doubling [CO2], but also to a 5-fold increase and to decrease to zero. Using a wide range of species and conditions, we confirm earlier reports that inhibition of respiration by instantaneous elevation of [CO2] is likely an experimental artifact. Instead of the expected decrease in respiration per unit leaf area in response to long-term growth in the field at elevated [CO2], there was a significant increase of 11% and 7% on an area and mass basis, respectively, averaged across all experiments. The findings suggest that leaf dark respiration will increase not decrease as atmospheric [CO2] rises.  相似文献   

2.
A Comparison of Dark Respiration between C(3) and C(4) Plants   总被引:2,自引:2,他引:0       下载免费PDF全文
Byrd GT  Sage RF  Brown RH 《Plant physiology》1992,100(1):191-198
Lower respiratory costs were hypothesized as providing an additional benefit in C4 plants compared to C3 plants due to less investment in proteins in C4 leaves. Therefore, photosynthesis and dark respiration of mature leaves were compared between a number of C4 and C3 species. Although photosynthetic rates were generally greater in C4 when compared to C3 species, no differences were found in dark respiration rates of individual leaves at either the beginning or after 16 h of the dark period. The effects of nitrogen on photosynthesis and respiration of individual leaves and whole plants were also investigated in two species that occupy similar habitats, Amaranthus retroflexus (C4) and Chenopodium album (C3). For mature leaves of both species, there was no relationship between leaf nitrogen and leaf respiration, with leaves of both species exhibiting a similar rate of decline after 16 h of darkness. In contrast, leaf photosynthesis increased with increasing leaf nitrogen in both species, with the C4 species displaying a greater photosynthetic response to leaf nitrogen. For whole plants of both species grown at different nitrogen levels, there was a clear linear relationship between net CO2 uptake and CO2 efflux in the dark. The dependence of nightly CO2 efflux on CO2 uptake was similar for both species, although the response of CO2 uptake to leaf nitrogen was much steeper in the C4 species, Amaranthus retroflexus. Rates of growth and maintenance respiration by whole plants of both species were similar, with both species displaying higher rates at higher leaf nitrogen. There were no significant differences in leaf or whole plant maintenance respiration between species at any temperature between 18 and 42°C. The data suggest no obvious differences in respiratory costs in C4 and C3 plants.  相似文献   

3.
We measured the oxygen isotope composition (delta(18)O) of CO(2) respired by Ricinus communis leaves in the dark. Experiments were conducted at low CO(2) partial pressure and at normal atmospheric CO(2) partial pressure. Across both experiments, the delta(18)O of dark-respired CO(2) (delta(R)) ranged from 44 per thousand to 324 per thousand (Vienna Standard Mean Ocean Water scale). This seemingly implausible range of values reflects the large flux of CO(2) that diffuses into leaves, equilibrates with leaf water via the catalytic activity of carbonic anhydrase, then diffuses out of the leaf, leaving the net CO(2) efflux rate unaltered. The impact of this process on delta(R) is modulated by the delta(18)O difference between CO(2) inside the leaf and in the air, and by variation in the CO(2) partial pressure inside the leaf relative to that in the air. We developed theoretical equations to calculate delta(18)O of CO(2) in leaf chloroplasts (delta(c)), the assumed location of carbonic anhydrase activity, during dark respiration. Their application led to sensible estimates of delta(c), suggesting that the theory adequately accounted for the labeling of CO(2) by leaf water in excess of that expected from the net CO(2) efflux. The delta(c) values were strongly correlated with delta(18)O of water at the evaporative sites within leaves. We estimated that approximately 80% of CO(2) in chloroplasts had completely exchanged oxygen atoms with chloroplast water during dark respiration, whereas approximately 100% had exchanged during photosynthesis. Incorporation of the delta(18)O of leaf dark respiration into ecosystem and global scale models of C(18)OO dynamics could affect model outputs and their interpretation.  相似文献   

4.
Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already diffusion-limited at 20.6 kPa (critical O(2) pressure for respiration, COP(R)>/= 284 mmol O(2) m(-3)), whereas for some leaves with gas films, O(2) uptake declined only at approx. 4 kPa (COP(R) 54 mmol O(2) m(-3)). Gas films also improved CO(2) uptake so that, during light periods, underwater P(N) was enhanced up to sixfold. Gas films on submerged leaves enable continued gas exchange via stomata and thus bypassing of cuticle resistance, enhancing exchange of O(2) and CO(2) with the surrounding water, and therefore underwater P(N) and respiration.  相似文献   

5.
In CO2-free air, the CO2 postirradiation burst (PIB) in wheat leaves was measured with an IRGA in an open gas exchange system to ascertain its potential role in alleviating photoinhibition of photorespiratory carbon oxidation (PCO) under a CO2 deficiency. A pre-photosynthesized leaf having been transferred into CO2-free air exhibited a typical CO2 PIB following darkening which could last, with a rate substantially higher than that of dark respiration, over a long time period (at least more than 2 h) of continuously alternate irradiation (2 min)-dark (2 min)-light transitions. The rate and the time of PIB maintenance, although unaffected by the exogenous dark respiration inhibitor iodoacetic acid, were stimulated largely by increasing irradiance and O2 level, and suppressed by DCMU and N-ethyl-maleimide (NEM). They also showed a large photosynthates-loading dependence. In a darkened leaf, the irradiation-induced PIB in the CO2-free air was clearly revealed and it was characterized by an initial net uptake of respiratory CO2. The light-induced PIB was accelerated by increasing irradiance, and delayed by prolonging the period of darkening the leaves. Hence, the origin of carbon needed for a long-term CO2 evolution in the CO2-free air might not only be derived directly from the pool of intermediates in the Calvin cycle, but it might also arise indirectly from a remotely fixed reserve of photosynthates in the leaf via a PCO-mediated, yet to be further clarified, mobilization process. Such mobilization of photosynthates probably exerted an important role in coordination of photochemical reactions and carbon assimilation during photosynthesis in C3 plants under the photoinhibitory conditions.  相似文献   

6.
大气CO2浓度倍增对植物暗呼吸的影响   总被引:9,自引:0,他引:9  
以长期生长于350和700μmolCO_2·mol~(-1)空气的开顶式培养室的杜仲(Eucommia ulmoides Oliv.)、紫花苜蓿(Medicago sativa L.)、玉米(Zea mays L.)等10种植物的离体成熟叶片或整株为材料,研究不同测定温度(15~35℃)下,CO_2浓度倍增对植物暗呼吸的影响。结果表明:在较低温度(15℃、20℃)下,CO_2浓度倍增对植物暗呼吸没有显著效应,在较高温度(30℃、35℃)下多数被测植物的暗呼吸显著增强。讨论了实验所得结果在未来全球气候变化中的可能的意义。  相似文献   

7.
Villar R  Held AA  Merino J 《Plant physiology》1994,105(1):167-172
Dark respiration in the light was estimated in leaves of two woody species (Heteromeles arbutifolia Ait. and Lepechinia fragans Greene) using two different approaches based on gas-exchange techniques: the Kok method and the Laisk method. In all cases, dark respiration in the light was lower (P < 0.05) than respiration in darkness, indicating that dark respiration was inhibited in the light. Rates of dark respiration in the light estimated by the Laisk method were 52% higher (P < 0.05) than those estimated by the Kok method. Differences between the methods could be explained by the low ambient CO2 concentrations required by the Laisk approach. The mean value of the inhibition of respiration by light for the two species, corrected for the ambient CO2 concentration effect, was 55%. Despite the differences in leaf characteristics between the species, values of the CO2 photocompensation point, at which the rate of photosynthetic CO2 uptake equaled that of photorespiratory CO2 evolution, were very constant, suggesting an excellent consistency in the results obtained with the Laisk approach.  相似文献   

8.
The origin of the carbon atoms in the CO(2) respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using (13)C/(12)C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO(2) respired in the dark after a light period revealed that the CO(2) was labeled, but the labeling level decreased progressively as the dark period increased. The pattern of disappearance depended on the amount of carbon fixed during the labeling and indicated that there were several pools of respiratory metabolites with distinct turnover rates. We demonstrate that the carbon recently assimilated during photosynthesis accounts for less than 50% of the carbon in the CO(2) lost by dark respiration and that the proportion is not influenced by leaf starvation in darkness before the labeling. Therefore, most of the carbon released by dark respiration after illumination does not come from new photosynthates.  相似文献   

9.
Ten species of plants were grown at ambient (350μmol CO2·mol-1 air) and doubled (700 μmol CO2·mol-1 air) CO2 concentrations at ambient temperature and illumination in order to examine changes of dark respiration of whole seedlings or detached leaves. Effects of CO2 on dark respiration were determined by brief exposure ( ≤ 5 min) to corresponding CO2 concentration and temperatures ( 15,20,25,30 and 35 ℃ ) with infrared CO2 analyzer. The reductions in dark respiration on a weight base for leaves of East-Liaoning oak (Quercus liaotungensis Koidz. ) at 15,20 and 25 ℃ and of soybean ( Glycine max L. ) at 20,25,30 and 35 ℃ and for whole seedlings of three- tcoloured amaranth (Amaranthus tricolor L. ) at 15 and 20 ℃ and cucumber ( Cucumis sativus L. ) at 15 cE measured at elevated concentration relative to the ambient CO2 concentration were observed. No significant difference in respiration responded was observed to elevated or ambient CO2 concentrations at 15 ℃ in maize (Zea mays L. ) seedlings and alfalfa (Medicago sativa L. ) leaves, at 35 ℃ in East-Liaoning oak leaves and at 20,25 and 30 ℃ in three-coloured amaranth seedlings. However CO2 efflux in leaves of weeping willow (Salix babylonica L. ), simon poplar (Populus simonii Carr. ) and eucommia (Eucommia ulmoides Oliv. ) at 15,20,25,30 and 35 ℃, alfalfa at 20,25,30 and 35 ℃, East-Liaoning oak at 30 ℃, maize at 15 ℃, seedlings of common buckwheat (Fagotrytum esculentum Moench) at 15,20,25,30 and 35 ℃, cucumber and maize at 20,25,30 and 35 ℃ and three-coloured amaranth at 35 ℃ showed an increase at elevated in contrast to ambient CO2 concentration. In general, at lower temperatures (i. e. 15, 20 ℃ ) there was no significant difference between elevated and ambient CO2 concentration for dark respiration, while at higher temperatures (i. e. 30,35 ℃ ) elevated CO2 concentration positively stimulate clark respiretion. It has not yet been described that double CO2 concentration could enhance plant dark respiration at 30 and 35 ℃. Impacts of the characteristics in dark respiration on the future changes of vegetation and its mechanism were discussed.  相似文献   

10.
Long-term and short-term effects of CO2 enrichment on dark respiration were investigated using soybean (Glycine max [L.] Merr.) plants grown at either 35.5 or 71.0 Pa CO2. Indirect effects, or effects of growth in elevated CO2, were examined using a functional model that partitioned respiration into growth and maintenance components. Direct effects, or immediate effects of a short-term change in CO2, were examined by measuring dark respiration, first, at the CO2 partial pressure at which plants were grown, and second, after equilibration in the reciprocal CO2 partial pressure. The functional component model indicated that the maintenance coefficient of respiration increased 34% with elevated CO2, whereas the growth coefficient was not significantly affected. Changes in maintenance respiration were correlated with a 33% increase in leaf total nonstructural carbohydrate concentration, but leaf nitrogen content of soybean leaves was not affected by CO2 enrichment. Thus, increased maintenance respiration may be a consequence of increased nonstructural carbohydrate accumulation. When whole soybean plants were switched from low CO2 to high CO2 for a brief period, leaf respiration was always reduced. However, this direct effect of CO2 partial pressure was approximately 50% less in plants grown in elevated CO2. We conclude from this study that there are potentially important effects of CO2 enrichment on plant respiration but that the effects are different for plants given a short-term increase in CO2 partial pressure versus plants grown in elevated CO2.  相似文献   

11.
Variables Affecting the CO(2) Compensation Point   总被引:5,自引:5,他引:0       下载免费PDF全文
Some factors influencing dark respiration, photorespiration, and photosynthesis were examined for their effect on the CO2 compensation point (70 μl/l) of detached soybean (Glycine max) leaf discs. A higher compensation point in young leaves decreased to the constant value after leaf expansion and maturation, but increased again during senescence. The compensation point was 40 to 50% higher in plants grown in the summer than in the winter. The compensation point and dark respiration increased with temperatures above 17 C. Below 17 C dark respiration continued to decrease, but the compensation point did not decrease further. Increasing light intensities did not affect the compensation point.  相似文献   

12.
CO(2) released by respiring cells in tree stems can either diffuse to the atmosphere or dissolve in xylem sap. In this study, the internal and external fluxes of CO(2) released from respiring stems of five sycamore (Platanus occidentalis L.) trees were calculated. Mean rates of stem respiration were highest in mid-afternoon and lowest at night, and were positively correlated with air temperature. Over a 24 h period, on average 34% of the CO(2) released by respiring cells in the measured stem segment remained within the tree. CO(2) efflux to the atmosphere consisted of similar proportions of CO(2) derived from local respiring cells (55%) and CO(2) that had been transported in the xylem (45%), indicating that CO(2) efflux does not accurately estimate respiration. A portion of the efflux of transported CO(2) appeared to have originated in the root system. A modification of the method for calculating stem respiration based on internal and external fluxes of CO(2) was developed to separate efflux due to local respiration from efflux of transported CO(2).  相似文献   

13.
We investigated whether leaf dark respiration (nonphotorespiratory mitochondrial CO2 release) is inhibited by light in several Poa species, and whether differences in light inhibition between the species are related to differences in the rate of leaf net photosynthesis. Four lowland (Poa annua L., Poa compressa L., Poa pratensis L., and Poa trivialis L.), one subalpine (Poa alpina L.), and two alpine (Poa costiniana Vick. and Poa fawcettiae Vick.) Poa species differing in whole plant relative growth rates were grown under identical controlled conditions. Nonphotorespiratory mitochondrial CO2 release in the light (Rd) was estimated according to the Laisk method. Photosynthesis was measured at ambient CO2 partial pressure (35 Pa) and 500 [mu]mol photons m-2 s-1. The rate of photosynthesis per unit leaf mass was positively correlated with the relative growth rate, with the slow-growing alpine Poa species exhibiting the lowest photosynthetic rates. Rates of both Rd and respiration in darkness were also substantially lower in the alpine species. Nonphotorespiratory CO2 release in darkness was higher than Rd in all species. However, despite some variation between the species in the level of light inhibition of respiration, no relationship was observed between the level of inhibition and the rate of photosynthesis. Similarly, the level of inhibition was not correlated with the relative growth rate. Our results support the suggestion that rates of leaf respiration in the light are closely associated with rates in darkness.  相似文献   

14.
Increases in both atmospheric CO2 concentration ([CO2]) and ultraviolet-B (UV-B) radiation on the Earth's surface are features of current climate change patterns. An experiment was conducted in sunlit, controlled environment chambers known as Soil-Plant-Atmosphere-Research (SPAR) units to determine interactive effects of elevated [CO2] and UV-B radiation on leaf and canopy photosynthetic characteristics of cotton. Six treatments were comprised of two CO2 levels of 360 (ambient) and 720 (elevated) microL L(-1) and three levels of 0 (control), 8, and 16 kJ m(-2) d(-1) biologically effective UV-B radiation. Treatments were imposed for 66 days from crop emergence through three weeks after the first flower stage. Plants grown in elevated [CO2] had significantly greater leaf area, higher leaf and canopy net photosynthetic rates (PN), lower dark respiration rate (Rd), and lower light compensation point (LCP) than plants grown in ambient [CO2]. There was no difference in CO2 compensation point (gamma), maximum rate of Rubisco activity (Vcmax), or light-saturated rate of electron transport (Jmax) between ambient and elevated CO2 treatments. When plants were grown in 8 kJ m(-2) d(-1) UV-B radiation, most of the measured photosynthetic parameters did not differ from control plants. High UV-B (16 kJ) radiation, however, caused 47-50% smaller leaf area, 38-44% lower leaf PN, 72-74% lower Vcmax, and 61-66% lower Jmax compared to the control. There were no interactive effects of [CO2] and UV-B radiation on most of the photosynthetic parameters measured. From the results, it is concluded that decreased canopy photosynthesis due to enhanced UV-B radiation in cotton is associated with both smaller leaf area and lower leaf PN, and loss of Rubisco activity and electron transport are two major factors in UV-B inhibition of leaf PN.  相似文献   

15.
A mathematical model of leaf photosynthesis has been established. In this model, the processes of photosynthesis are divided into two parts, ie., the carboxylation process driven by light which is dependent on temperature and CO2 concentration, and the diffusion of CO2 from atmosphere to the carboxylation site. Finatly, CO2 uptake by the leaf is understood as dependent on 1), the CO2 response curve of the leaf mesophyll and 2). the CO2 partial pressure in the intercellular space in leaf. The COs response curve of the leaf photosynthesis is described mathematically in terms of carboxylation efficiency (Ca) or its initial slope and the photosynthetic capacity (Pm) or the CO2-saturated uptake rate of CO2 uptake, and dark respiration (Rd). The dependency of photosynthesis on leaf temperature and incident light intensity is incorporated into variations of those parameters which establish an appropriate response to internal CO2 pressure for particular light and temperature conditions prevailing at any time. Secondly the interactiion of stomata with photosynthesis is represented as an empirical relation between stomatal conductance and a combined environmental physiological index, APn·Hx/CaThe parameters used in the modelwere estimated with Marquardt-Newton method for non-linear function. Field measurements of mulberry leaf photosynthesis provided a data set for model testing. The resuks show that the simulated values of the model agree well with observed data. The model was used to analyse the response surface of leaf conductance and photosynthesis to environmental factors—Applications and limitations of the model are discussed  相似文献   

16.
The rate of dark CO2 efflux from mature wheat (Triticum aestivum cv Gabo) leaves at the end of the night is less than that found after a period of photosynthesis. After photosynthesis, the dark CO2 efflux shows complex dependence on time and temperature. For about 30 minutes after darkening, CO2 efflux includes a large component which can be abolished by transferring illuminated leaves to 3% O2 and 330 microbar CO2 before darkening. After 30 minutes of darkness, a relatively steady rate of CO2 efflux was obtained. The temperature dependence of steady-state dark CO2 efflux at the end of the night differs from that after a period of photosynthesis. The higher rate of dark CO2 efflux following photosynthesis is correlated with accumulated net CO2 assimilation and with an increase in several carbohydrate fractions in the leaf. It is also correlated with an increase in the CO2 compensation point in 21% O2, and an increase in the light compensation point. The interactions between CO2 efflux from carbohydrate oxidation and photorespiration are discussed. It is concluded that the rate of CO2 efflux by respiration is comparable in darkened and illuminated wheat leaves.  相似文献   

17.
In past studies, it was hypothesized that reductions in chloroplast isoprene emissions at high atmospheric CO(2) concentrations were caused by competition between cytosolic and mitochondrial processes for the same substrate, possibly phosphoenolpyruvate (PEP). We conducted field and laboratory experiments using leaves of white poplar (Populus alba L.) to identify whether an inverse relationship occurs between the dark respiration rate (a mitochondrial process) and the isoprene emission rate. Field experiments that were carried out in a free-air CO(2)-enriched (FACE) facility showed no clear effect of elevated CO(2) on either isoprene emission rate or respiration rate by leaves. In young, not yet fully expanded leaves, low isoprene emission and high dark respiration rates were measured in both ambient and elevated CO(2). In these leaves, isoprene emission was inversely correlated with dark respiration. It is possible to interpret from these results that, in young leaves, high rates of growth respiration compete with isoprene biosynthesis for the same substrate. However, it is also possible that the negative correlation reflects the contrasting reductions in growth respiration and increases in expression of the enzyme isoprene synthase at this final stage of leaf maturation. In contrast to our observations on young leaves, respiration rate and isoprene emission rate were positively correlated in older, fully expanded leaves (8 and 11 from apex). A positive correlation was also found between respiration rate and isoprene emission rate when these parameters were modulated using different ozone exposure, growth light intensity, growth temperature and exposure to different leaf temperatures in laboratory experiments. These data show that competition for substrate between isoprene biosynthesis and leaf respiration does not determine the rate of isoprene emission in most circumstances that affect both processes. A negative correlation was observed across all experiments between isoprene emission rate and the activity of phosphoenolpyruvate carboxylase (PEPc), a cytosolic enzyme that competes with isoprene biosynthesis for substrate. The cytosolic metabolite, PEP, occurs at a metabolic branch point from which substrate flows into three processes: (1) the production of pyruvate for mitochondrial respiration, (2) the production of oxaloacetate (OAA) by PEPc for anabolic support of mitochondrial respiration and (3) transport into the chloroplast to support chloroplastic demands for pyruvate, including isoprenoid biosynthesis. The results of our observations suggest that only the second process competes for substrate with isoprenoid synthesis, while the partitioning of PEP between mitochondrial respiration and chloroplast isoprenoid biosynthesis is controlled in a way that retains balance in substrate demand.  相似文献   

18.
BACKGROUND AND AIMS: Stem and branch respiration, important components of total forest ecosystem respiration, were measured on Norway spruce (Picea abies) trees from May to October in four consecutive years in order (1) to evaluate the influence of temperature on woody tissue CO2 efflux with special focus on variation in Q10 (change in respiration rate resulting from a 10 degrees C increase in temperature) within and between seasons, and (2) to quantify the contribution of above-ground woody tissue (stem and branch) respiration to the carbon balance of the forest ecosystem. METHODS: Stem and branch CO2 efflux were measured, using an IRGA and a closed gas exchange system, 3-4 times per month on 22-year-old trees under natural conditions. Measurements of ecosystem CO2 fluxes were also determined during the whole experiment by using the eddy covariance system. Stem and branch temperatures were monitored at 10-min intervals during the whole experiment. KEY RESULTS: The temperature of the woody tissue of stems and branches explained up to 68% of their CO2 efflux. The mean annual Q10 values ranged from 2.20 to 2.32 for stems and from 2.03 to 2.25 for branches. The mean annual normalized respiration rate, R10, for stems and branches ranged from 1.71 to 2.12 micromol CO2 m(-2)s (-1) and from 0.24 to 0.31 micromol CO2 m(-2) s(-1), respectively. The annual contribution of stem and branch CO2 efflux to total ecosystem respiration were, respectively, 8.9 and 8.1% in 1999, 9.2 and 9.2% in 2000, 7.6 and 8.6% in 2001, and 8.6 and 7.9% in 2002. Standard deviation for both components ranged from 3 to 8% of the mean. CONCLUSIONS: Stem and branch CO2 efflux varied diurnally and seasonally, and were related to the temperature of the woody tissue and to growth. The proportion of CO2 efflux from stems and branches is a significant component of the total forest ecosystem respiration, approx. 8% over the 4 years, and predictive models must take their contribution into account.  相似文献   

19.
We developed a new method using 13CO2 and mass spectrometry to elucidate the role of photorespiration as an alternative electron dissipating pathway under drought stress. This was achieved by experimentally distinguishing between the CO2 fluxes into and out of the leaf. The method allows us to determine the rates of gross CO2 assimilation and gross CO2 evolution in addition to net CO2 uptake by attached leaves during steady-state photosynthesis. Furthermore, a comparison between measurements under photorespiratory and non-photorespiratory conditions may give information about the contribution of photorespiration and mitochondrial respiration to the rate of gross CO2 evolution at photosynthetic steady state. In tomato (Lycopersicon esculentum Mill. cv Moneymaker) leaves, drought stress decreases the rates of net and gross CO2 uptake as well as CO2 release from photorespiration and mitochondrial respiration in the light. However, the ratio of photorespiratory CO2 evolution to gross CO2 assimilation rises with water deficit. Also the contribution of re-assimilation of (photo) respiratory CO2 to gross CO2 assimilation increases under drought.  相似文献   

20.
We describe an open leaf gas exchange system coupled to a tunable diode laser (TDL) spectroscopy system enabling measurement of the leaf respiratory CO(2) flux and its associated carbon isotope composition (delta(13)C(Rl)) every 3 min. The precision of delta(13)C(Rl) measurement is comparable to that of traditional mass spectrometry techniques. delta(13)C(Rl) from castor bean (Ricinus communis L.) leaves tended to be positively related to the ratio of CO(2) produced to O(2) consumed [respiratory quotient (RQ)] after 24-48 h of prolonged darkness, in support of existing models. Further, the apparent fractionation between respiratory substrates and respired CO(2) within 1-8 h after the start of the dark period was similar to previous observations. In subsequent experiments, R. communis plants were grown under variable water availability to provide a range in delta(13)C of recently fixed carbohydrate. In leaves exposed to high light levels prior to the start of the dark period, CO(2) respired by leaves was up to 11 per thousand more enriched than phloem sap sugars within the first 10-15 min after plants had been moved from the light into the dark. The (13)C enrichment in respired CO(2) then decreased rapidly to within 3-7 per thousand of phloem sap after 30-60 min in the dark. This strong enrichment was not observed if light levels were low prior to the start of the dark period. Measurements of RQ confirmed that carbohydrates were the likely respiratory substrate for plants (RQ > 0.8) within the first 60 min after illumination. The strong (13)C enrichment that followed a high light-to-dark transition coincided with high respiration rates, suggesting that so-called light-enhanced dark respiration (LEDR) is fed by (13)C-enriched metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号