首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dinoflagellates contain diverse plastids of uncertain origin. To determine the origin of the peridinin‐ and fucoxanthin‐containing dinoflagellate plastid, we sequenced the plastid‐encoded psaA, psbA, and rbcL genes from various red and dinoflagellate algae. The psbA gene phylogeny, which was made from a dataset of 15 dinoflagellates, 22 rhodophytes, five cryptophytes, seven haptophytes, seven stramenopiles, two chlorophytes, and a glaucophyte as the outgroup, supports monophyly of the peridinin‐, and fucoxanthin‐containing dinoflagellates, as a sister group to the haptophytes. The monophyletic relationship with the haptophytes is recovered in the psbA + psaA phylogeny, with stronger support. The rubisco tree utilized the ‘Form I’ red algal type of rbcL and included fucoxanthin‐containing dinoflagellates. The dinoflagellate + haptophyte sister relationship is also recovered in this analysis. Peridinium foliaceum is shown to group with the diatoms in all the phylogenies. Based on our analyses of plastid sequences, we postulate that: (1) the plastid of peridinin‐, and fucoxanthin‐containing dinoflagellates originated from a common ancestor; (2) the ancestral dinoflagellate acquired its plastid from a haptophyte though a tertiary plastid replacement; (3) ‘Form II’ rubisco replaced the ancestral rbcL after the divergence of the peridinin‐, and fucoxanthin‐containing dinoflagellates; and (4) we confirm that the plastid of P. foliaceum originated from a Stramenopiles endosymbiont.  相似文献   

2.
The origin and subsequent spread of plastids by endosymbiosis had a major environmental impact and altered the course of a great proportion of eukaryotic biodiversity. The ancestor of dinoflagellates contained a secondary plastid that was acquired in an ancient endosymbiotic event, where a eukaryotic cell engulfed a red alga. This is known as secondary endosymbiosis and has happened several times in eukaryotic evolution. Certain dinoflagellates, however, are unique in having replaced this secondary plastid in an additional (tertiary) round of endosymbiosis. Most plastid proteins are encoded in the nucleus of the host and are targeted to the organelle. When secondary or tertiary endosymbiosis takes place, it is thought that these genes move from nucleus to nucleus, so the plastid retains the same proteome. We have conducted large-scale expressed sequence tag (EST) surveys from Karlodinium micrum, a dinoflagellate with a tertiary haptophyte-derived plastid, and two haptophytes, Isochrysis galbana and Pavlova lutheri. We have identified all plastid-targeted proteins, analysed the phylogenetic origin of each protein, and compared their plastid-targeting transit peptides. Many plastid-targeted genes in the Karlodinium nucleus are indeed of haptophyte origin, but some genes were also retained from the original plastid (showing the two plastids likely co-existed in the same cell), in other cases multiple isoforms of different origins exist. We analysed plastid-targeting sequences and found the transit peptides in K.micrum are different from those found in either dinoflagellates or haptophytes, pointing to a plastid with an evolutionarily chimeric proteome, and a massive remodelling of protein trafficking during plastid replacement.  相似文献   

3.
Accounting for the diversity of photosynthetic eukaryotes is an important challenge in microbial biology. It has now become clear that endosymbiosis explains the origin of the photosynthetic organelle (plastid) in different algal groups. The first plastid originated from a primary endosymbiosis, whereby a previously non-photosynthetic protist engulfed and enslaved a cyanobacterium. This alga then gave rise to the red, green, and glaucophyte lineages. Algae such as the chlorophyll c-containing chromists gained their plastid through secondary endosymbiosis, in which an existing eukaryotic alga (in this case, a rhodophyte) was engulfed. Another chlorophyll c-containing algal group, the dinoflagellates, is a member of the alveolates that is postulated to be sister to chromists. The plastid in these algae has followed a radically different path of evolution. The peridinin-containing dinoflagellates underwent an unprecedented level of plastid genome reduction with the ca. 16 remaining genes encoded on 1–3 gene minicircles. In this short review, we examine algal plastid diversity using phylogenetic and genomic methods and show endosymbiosis to be a major force in algal evolution. In particular, we focus on the evolution of targeting signals that facilitate the import of nuclear-encoded photosynthetic proteins into the plastid.  相似文献   

4.
Dinoflagellates harbour diverse plastids obtained from several algal groups, including haptophytes, diatoms, cryptophytes, and prasinophytes. Their major plastid type with the accessory pigment peridinin is found in the vast majority of photosynthetic species. Some species of dinoflagellates have other aberrantly pigmented plastids. We sequenced the nuclear small subunit (SSU) ribosomal RNA (rRNA) gene of the "green" dinoflagellate Gymnodinium chlorophorum and show that it is sister to Lepidodinium viride, indicating that their common ancestor obtained the prasinophyte (or other green alga) plastid in one event. As the placement of dinoflagellate species that acquired green algal or haptophyte plastids is unclear from small and large subunit (LSU) rRNA trees, we tested the usefulness of the heat shock protein (Hsp) 90 gene for dinoflagellate phylogeny by sequencing it from four species with aberrant plastids (G. chlorophorum, Karlodinium micrum, Karenia brevis, and Karenia mikimotoi) plus Alexandrium tamarense, and constructing phylogenetic trees for Hsp90 and rRNAs, separately and together. Analyses of the Hsp90 and concatenated data suggest an ancestral origin of the peridinin-containing plastid, and two independent replacements of the peridinin plastid soon after the early radiation of the dinoflagellates. Thus, the Hsp90 gene seems to be a promising phylogenetic marker for dinoflagellate phylogeny.  相似文献   

5.
Dinoflagellate algae are important primary producers and of significant ecological and economic impact because of their ability to form "red tides". They are also models for evolutionary research because of an unparalleled ability to capture photosynthetic organelles (plastids) through endosymbiosis. The nature and extent of the plastid genome in the dominant perdinin-containing dinoflagellates remain, however, two of the most intriguing issues in plastid evolution. The plastid genome in these taxa is reduced to single-gene minicircles encoding an incomplete (until now 15) set of plastid proteins. The location of the remaining photosynthetic genes is unknown. We generated a data set of 6,480 unique expressed sequence tags (ESTs) from the toxic dinoflagellate Alexandrium tamarense (for details, see the Experimental Procedures in the Supplemental Data) to find the missing plastid genes and to understand the impact of endosymbiosis on genome evolution. Here we identify 48 of the non-minicircle-encoded photosynthetic genes in the nuclear genome of A. tamarense, accounting for the majority of the photosystem. Fifteen genes that are always found on the plastid genome of other algae and plants have been transferred to the nucleus in A. tamarense. The plastid-targeted genes have red and green algal origins. These results highlight the unique position of dinoflagellates as the champions of plastid gene transfer to the nucleus among photosynthetic eukaryotes.  相似文献   

6.
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.  相似文献   

7.
Endosymbiosis has spread photosynthesis to many branches of the eukaryotic tree; however, the history of photosynthetic organelle (plastid) gain and loss remains controversial. Fortuitously, endosymbiosis may leave a genomic footprint through the transfer of endosymbiont genes to the "host" nucleus (endosymbiotic gene transfer, EGT). EGT can be detected through comparison of host genomes to uncover the history of past plastid acquisitions. Here we focus on a lineage of chlorophyll c-containing algae and protists ("chromalveolates") that are postulated to share a common red algal secondary endosymbiont. This plastid is originally of cyanobacterial origin through primary endosymbiosis and is closely related among the Plantae (i.e., red, green, and glaucophyte algae). To test these ideas, an automated phylogenomics pipeline was used with a novel unigene data set of 5,081 expressed sequence tags (ESTs) from the haptophyte alga Emiliania huxleyi and genome or EST data from other chromalveolates, red algae, plants, animals, fungi, and bacteria. We focused on nuclear-encoded proteins that are targeted to the plastid to express their function because this group of genes is expected to have phylogenies that are relatively easy to interpret. A total of 708 genes were identified in E. huxleyi that had a significant Blast hit to at least one other taxon in our data set. Forty-six of the alignments that were derived from the 708 genes contained at least one other chromalveolate (i.e., besides E. huxleyi), red and/or green algae (or land plants), and one or more cyanobacteria, whereas 15 alignments contained E. huxleyi, one or more other chromalveolates, and only cyanobacteria. Detailed phylogenetic analyses of these data sets turned up 19 cases of EGT that did not contain significant paralogy and had strong bootstrap support at the internal nodes, allowing us to confidently identify the source of the plastid-targeted gene in E. huxleyi. A total of 17 genes originated from the red algal lineage, whereas 2 genes were of green algal origin. Our data demonstrate the existence of multiple red algal genes that are shared among different chromalveolates, suggesting that at least a subset of this group may share a common origin.  相似文献   

8.
Dinoflagellates are a diverse group of protists, comprising photosynthetic and heterotrophic free-living species, as well as parasitic ones. About half of them are photosynthetic with peridinin-containing plastids being the most common. It is uncertain whether non-photosynthetic dinoflagellates are primitively so, or have lost photosynthesis. Studies of heterotrophic species from this lineage may increase our understanding of plastid evolution. We analyzed an EST project of the early-diverging heterotrophic dinoflagellate Crypthecodinium cohnii looking for evidence of past endosymbiosis. A large number of putative genes of cyanobacterial or algal origin were identified using BLAST, and later screened by metabolic function. Phylogenetic analyses suggest that several proteins could have been acquired from a photosynthetic endosymbiont, arguing for an earlier plastid acquisition in dinoflagellates. In addition, intact N-terminal plastid-targeting peptides were detected, indicating that C. cohnii may contain a reduced plastid and that some of these proteins are imported into this organelle. A number of metabolic pathways, such as heme and isoprenoid biosynthesis, seem to take place in the plastid. Overall, these data indicate that C. cohnii is derived from a photosynthetic ancestor and provide a model for loss of photosynthesis in dinoflagellates and their relatives. This represents the first extensive genomic analysis of a heterotrophic dinoflagellate.  相似文献   

9.
Takishita K  Ishida K  Maruyama T 《Protist》2004,155(4):447-458
Although most photosynthetic dinoflagellates have plastids with peridinin, the three dinoflagellate genera Karenia, Karlodinium, and Takayama possess anomalously pigmented plastids that contain fucoxanthin and its derivatives (19′-hexanoyloxy-fucoxanthin and 19′-butanoyloxy-fucoxanthin) instead of the peridinin. This pigment composition is similar to that of haptophytes. All peridinin-containing dinoflagellates investigated so far have at least two types of glyceraldehyde-3-phosphate dehydrogenase (GAPDH): cytosolic and plastid-targeted forms. In the present study, we cloned and sequenced genes encoding cytosolic and plastid-targeted GAPDH proteins from three species of the fucoxanthin derivative-containing dinoflagellates. Based on the molecular phylogeny, the plastid-targeted GAPDH genes of the fucoxanthin derivative-containing dinoflagellates were closely related to those of haptophyte algae rather than to the peridinin-containing dinoflagellates, while one of several cytosolic versions from the peridinin- and the fucoxanthin derivative-containing dinoflagellates are closely related to each other. Considering a previously reported theory that the plastid-targeted GAPDH from the peridinin-containing dinoflagellates originated by a gene duplication of the cytosolic form before the splitting of the dinoflagellate lineage, it is highly likely that the plastid-targeted GAPDH gene of the peridinin-containing dinoflagellates is original in this algal group and that in the fucoxanthin-containing dinoflagellates, the original plastid-targeted GAPDH was replaced by that of a haptophyte endosymbiont during a tertiary endosymbiosis. The present results strongly support the hypothesis that the plastids of the peridinin- and the fucoxanthin derivative-containing dinoflagellates are of separate origin.  相似文献   

10.
Danne JC  Gornik SG  Waller RF 《Protist》2012,163(1):76-90
Most photosynthetic dinoflagellates harbour a red alga-derived secondary plastid. In the dinoflagellate Karlodinium micrum, this plastid was replaced by a subsequent endosymbiosis, resulting in a tertiary plastid derived from a haptophyte. Evolution of endosymbionts entails substantial relocation of endosymbiont genes to the host nucleus: a process called endosymbiotic gene transfer (EGT). In K. micrum, numerous plastid genes from the haptophyte nucleus are found in the host nucleus, providing evidence for EGT in this system. In other cases of endosymbiosis, notably ancient primary endosymbiotic events, EGT has been inferred to contribute to remodeling of other cell functions by expression of proteins in compartments other than the endosymbiont from which they derived. K. micrum provides a more recently derived endosymbiotic system to test for evidence of EGT and gain of function in non-plastid compartments. In this study, we test for gain of haptophyte-derived proteins for mitochondrial function in K. micrum. Using molecular phylogenies we have analysed whether nucleus-encoded mitochondrial proteins were inherited by EGT from the haptophyte endosymbiont, or vertically inherited from the dinoflagellate host lineage. From this dataset we found no evidence of haptophyte-derived mitochondrial genes, and the only cases of non-vertical inheritance were genes derived from lateral gene transfer events.  相似文献   

11.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have acquired their plastids via endosymbiosis of a haptophyte. The dinoflagellate plastid sequences appear to have undergone rapid sequence evolution, and there is considerable divergence between the three species. However, distance, parsimony, and maximum-likelihood phylogenetic analyses of plastid SSU rRNA gene sequences place the three species within the haptophyte clade. Pavlova gyrans is the most basal branching haptophyte and is the outgroup to a clade comprising the dinoflagellate sequences and those of other haptophytes. The haptophytes themselves are thought to have plastids of a secondary origin; hence, these dinoflagellates appear to have tertiary plastids. Both molecular and morphological data divide the plastids into two groups, where G. aureolum and G. breve have similar plastid morphology and G. galatheanum has plastids with distinctive features.  相似文献   

12.
Photosynthetic eukaryotes unite: endosymbiosis connects the dots   总被引:15,自引:0,他引:15  
The photosynthetic organelle of algae and plants (the plastid) traces its origin to a primary endosymbiotic event in which a previously non-photosynthetic protist engulfed and enslaved a cyanobacterium. This eukaryote then gave rise to the red, green and glaucophyte algae. However, many algal lineages, such as the chlorophyll c-containing chromists, have a more complicated evolutionary history involving a secondary endosymbiotic event, in which a protist engulfed an existing eukaryotic alga (in this case, a red alga). Chromists such as diatoms and kelps then rose to great importance in aquatic habitats. Another algal group, the dinoflagellates, has undergone tertiary (engulfment of a secondary plastid) and even quaternary endosymbioses. In this review, we examine algal diversity and show endosymbiosis to be a major force in algal evolution. This area of research has advanced rapidly and long-standing issues such as the chromalveolate hypothesis and the extent of endosymbiotic gene transfer have recently been clarified.  相似文献   

13.
The peridinin‐containing plastid found in most photosynthetic dinoflagellates is thought to have been replaced in a few lineages by plastids of chlorophyte, diatom, or haptophyte origin. Other distinct lineages of phagotrophic dinoflagellates retain functional plastids obtained from algal prey for different durations and with varying source species specificity. 18S rRNA gene sequence analyses have placed a novel gymnodinoid dinoflagellate isolated from the Ross Sea (RSD) in the Kareniaceae, a family of dinoflagellates with permanent plastids of haptophyte origin. In contrast to other species in this family, the RSD contains kleptoplastids sequestered from its prey, Phaeocystis antarctica. Culture experiments were employed to determine whether the RSD fed selectively on P. antarctica when offered in combination with another polar haptophyte or cryptophyte species, and whether the RSD, isolated from its prey and starved, would take up plastids from P. antarctica or from other polar haptophyte or cryptophyte species. Evidence was obtained for selective feeding on P. antarctica, plastid uptake from P. antarctica, and increased RSD growth in the presence of P. antarctica. The presence of a peduncle‐like structure in the RSD suggests that kleptoplasts are obtained by myzocytosis. RSD cells incubated without P. antarctica were capable of survival for at least 29.5 months. This remarkable longevity of the RSD's kleptoplasts and its species specificity for prey and plastid source is consistent with its prolonged co‐evolution with P. antarctica. It may also reflect the presence of a plastid protein import mechanism and genes transferred to the dinokaryon from a lost permanent haptophyte plastid.  相似文献   

14.
Plastids (the photosynthetic organelles of plants and algae) originated through endosymbiosis between a cyanobacterium and a eukaryote and subsequently spread to other eukaryotes by secondary endosymbioses between two eukaryotes. Mounting evidence favors a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their nonphotosynthetic relatives, termed chromalveolates), but so far, no single molecular marker has been described that supports this common origin. One piece of evidence comes from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrion-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts and found haptophyte homologs that branch within a strongly supported clade of chromalveolate plastid-targeted genes, being more closely related to an apicomplexan homolog than was expected. The evolution of plastid-targeted GAPDH supports red algal ancestry of apicomplexan plastids and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in nonphotosynthetic lineages such as ciliates.  相似文献   

15.
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non‐photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.  相似文献   

16.
A molecular timeline for the origin of photosynthetic eukaryotes   总被引:24,自引:0,他引:24  
The appearance of photosynthetic eukaryotes (algae and plants) dramatically altered the Earth's ecosystem, making possible all vertebrate life on land, including humans. Dating algal origin is, however, frustrated by a meager fossil record. We generated a plastid multi-gene phylogeny with Bayesian inference and then used maximum likelihood molecular clock methods to estimate algal divergence times. The plastid tree was used as a surrogate for algal host evolution because of recent phylogenetic evidence supporting the vertical ancestry of the plastid in the red, green, and glaucophyte algae. Nodes in the plastid tree were constrained with six reliable fossil dates and a maximum age of 3,500 MYA based on the earliest known eubacterial fossil. Our analyses support an ancient (late Paleoproterozoic) origin of photosynthetic eukaryotes with the primary endosymbiosis that gave rise to the first alga having occurred after the split of the Plantae (i.e., red, green, and glaucophyte algae plus land plants) from the opisthokonts sometime before 1,558 MYA. The split of the red and green algae is calculated to have occurred about 1,500 MYA, and the putative single red algal secondary endosymbiosis that gave rise to the plastid in the cryptophyte, haptophyte, and stramenopile algae (chromists) occurred about 1,300 MYA. These dates, which are consistent with fossil evidence for putative marine algae (i.e., acritarchs) from the early Mesoproterozoic (1,500 MYA) and with a major eukaryotic diversification in the very late Mesoproterozoic and Neoproterozoic, provide a molecular timeline for understanding algal evolution.  相似文献   

17.
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.  相似文献   

18.
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3'-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.  相似文献   

19.
Plastids (photosynthetic organelles of plants and algae) are known to have spread between eukaryotic lineages by secondary endosymbiosis, that is, by the uptake of a eukaryotic alga by another eukaryote. But the number of times this has taken place is controversial. This is particularly so in the case of eukaryotes with plastids derived from red algae, which are numerous and diverse. Despite their diversity, it has been suggested that all these eukaryotes share a recent common ancestor and that their plastids originated in a single endosymbiosis, the so-called "chromalveolate hypothesis." Here we describe a novel molecular character that supports the chromalveolate hypothesis. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic and Calvin cycle enzyme that exists as two nonhomologous types, class I and class II. Red algal plastid-targeted FBA is a class I enzyme related to homologues from plants and green algae, and it would be predicted that the plastid-targeted FBA from algae with red algal secondary endosymbionts should be related to this class I enzyme. However, we show that plastid-targeted FBA of heterokonts, cryptomonads, haptophytes, and dinoflagellates (all photosynthetic chromalveolates) are class II plastid-targeted enzymes, completely unlike those of red algal plastids. The chromalveolate enzymes form a strongly supported group in FBA phylogeny, and their common possession of this unexpected plastid characteristic provides new evidence for their close relationship and a common origin for their plastids.  相似文献   

20.
Plantae (as defined by Cavalier-Smith, 1981) plastids evolved via primary endosymbiosis whereby a heterotrophic protist enslaved a photosynthetic cyanobacterium. This "primary" plastid spread into other eukaryotes via secondary endosymbiosis. An important but contentious theory in algal evolution is the chromalveolate hypothesis that posits chromists (cryptophytes, haptophytes, and stramenopiles) and alveolates (ciliates, apicomplexans, and dinoflagellates) share a common ancestor that contained a red-algal-derived "secondary" plastid. Under this view, the existence of several later-diverging plastid-lacking chromalveolates such as ciliates and oomycetes would be explained by plastid loss in these lineages. To test the idea of a photosynthetic ancestry for ciliates, we used the 27,446 predicted proteins from the macronuclear genome of Tetrahymena thermophila to query prokaryotic and eukaryotic genomes. We identified 16 proteins of possible algal origin in the ciliates Tetrahymena and Paramecium tetraurelia. Fourteen of these are present in other chromalveolates. Here we compare and contrast the likely scenarios for algal-gene origin in ciliates either via multiple rounds of horizontal gene transfer (HGT) from algal prey or symbionts, or through endosymbiotic gene transfer (EGT) during a putative photosynthetic phase in their evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号