首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Assembly of F-actin that links with beta1-integrin during the G1 phase of cell cycle is released from beta1-integrin and disrupted at mitosis. However, it remains unclear how F-actin assembly to which beta1-integrin anchors is cell cycle-dependently regulated. We show that beta1-integrin was co-immunoprecipitated and co-localized with a small GTPase Rac and its effector IQGAP1, along with PP2A-AC, in HME cells during G1. When the cells were accumulated to G2/M, the co-immunoprecipitation or co-localization of IQGAP1 and PP2A-AC with beta1-integrin was lost, leaving Rac bound to beta1-integrin. The dissociated IQGAP1 was co-immunoprecipitated with the concomitantly dissociated PP2A-A and -C, indicating the complex formation among the proteins in G2/M cells. Falling ball viscometric assays revealed that only IQGAP1-bound beta1-integrin-Rac in G1 cells exhibited an enhanced F-actin cross-linking activity. The results suggest that the mitotic loss of F-actin assembly to which beta1-integrin anchors is due to PP2A-mediated dissociation of IQGAP1 from Rac-bound beta1-integrin.  相似文献   

3.
4.
We have followed the fate of two components of extrachromosomal nucleoli, amplified ribosomal DNA (rDNA) and 7.5 kb precursor rRNA, during early embryogenesis of Xenopus laevis. Other workers have shown that the amount of amplified rDNA accumulated during oogenesis remains unchanged through the 16-cell stage of embryogenesis. Here we show that as embryonic cleavage continues, the amount of amplified rDNA decreases until it is no longer detectable in the early gastrula embryo. In contrast, the amount of 7.5 kb precursor rRNA in eggs, early cleavage stage embryos, or blastula stage embryos is the same as in oocyte nuclei. Since no rRNA synthesis occurs during these early stages, we conclude that the precursor rRNA sequences synthesized in the oocyte are neither processed nor degraded during early development. The amplified rDNA is not replicated in the early embryo even though the chromosomal DNA of the embryo replicates every 30 min during the first 7.5 hr of embryogenesis. When amplified rDNA is purified and then injected into cleaving embryos, however, we find that it is replicated. This finding suggests that some factor(s) prevents the endogenous amplified rDNA from responding to the cellular replication signals. We show that methylation of cytosine in the rDNA is not related to the DNA's capacity for replication in this system since amplified (unmethylated) and chromosomal (methylated) rDNA are both replicated when injected into embryos. The methylation pattern of these rDNAs appears to be maintained after replication in the embryo.  相似文献   

5.
Xoom has been identified as a novel gene that plays an important role in gastrulation of Xenopus laevis embryo. Although Xoom is actively transcribed during oogenesis, distribution and function of its translation product have not yet been clarified. In the present study, the polyclonal antibody raised against Xoom was generated to investigate a behavior of Xoom protein. Anti-Xoom antibodies revealed that there are two forms of Xoom protein in Xenopus embryos: (i) a 45 kDa soluble cytoplasmic form; and (ii) a 44 kDa membrane-associated form. Two forms of Xoom protein were ubiquitously detected from unfertilized egg to tadpole stage, with a qualitative peak during blastula and gastrula stages. Immunohistochemical examination showed that Xoom protein is maternally stored in the animal subcortical layer and divided into presumptive ectodermal cells during cleavage stages. Enzymatic digestion of membrane protein and immunologic detection of Xoom showed that Xoom exists as a membrane-associated protein. To examine a function of Xoom protein, anti-Xoom antibodies were injected into blastocoele of stage 7 blastula embryo. Anti-Xoom antibodies caused gastrulation defect in a dose- dependent manner. These results suggest that maternally prepared Xoom protein is involved in gastrulation movement on ectodermal cells.  相似文献   

6.
The Rieske iron-sulfur protein of the cytochrome bc1 complex is synthesized in the cytosol as a precursor with an additional 30 amino acids at the amino terminus. After import into the mitochondrial matrix, the precursor is processed to the mature form by two distinct proteolytic cleavages. Addition of 2.5 mM EDTA and 0.5 mM o-phenanthroline to the incubation mixture during import of the iron-sulfur protein precursor in vitro resulted in the selective inhibition of the second processing step with the concomitant accumulation of the intermediate form. The intermediate form was chased to the mature form in the presence of antimycin and oligomycin (to block the formation of a membrane potential) provided that 0.5 nM ATP and a metal ion such as Ca2+, Mn2+, or Mg2+ were added. Ca2+ ion was the most effective and at a concentration of 2.5 mM resulted in the complete cleavage of the intermediate to the mature form. Addition of Zn2+, Co2+, Mo2+, and Fe2+ was not effective in restoring the second cleavage. The pH optimum for the processing of the intermediate form of the iron-sulfur protein to the mature form was between 6.8-8.0. Processing of the intermediate form of the iron-sulfur protein to the mature form was observed at temperatures ranging from 12 to 27 degrees C in a temperature-dependent manner. The time course during the chase indicated that the second processing step was completed within 2 min after addition of Ca2+ ions. Attempts to isolate the second processing enzyme by sonication of mitochondria or by solubilization with detergents such as digitonin, Triton X-100, dodecyl-maltoside, or octyl-glucoside were unsuccessful as only the first cleavage was observed. Hence, the second processing enzyme may be present in the inner membrane or matrix in a conformation disrupted by detergents or alternatively the enzyme may be very labile.  相似文献   

7.
Tight junctions (TJs) perform a critical role in the transport functions and morphogenetic activity of the primary epithelium formed during Xenopus cleavage. Biogenesis of these junctions was studied by immunolocalization of TJ-associated proteins (cingulin, ZO-1 and occludin) and by an in vivo biotin diffusion assay. Using fertilized eggs synchronized during the first division cycle, we found that membrane assembly of the TJ initiated at the animal pole towards the end of zygote cytokinesis and involved sequential incorporation of components in the order cingulin, ZO-1 and occludin. The three constituents appeared to be recruited from maternal stores and were targeted to the nascent TJ site by different pathways. TJ protein assembly was focused precisely to the border between the oolemma-derived apical membrane and newly-inserted basolateral membrane generated during cytokinesis and culminated in the formation of functional TJs in the two-cell embryo, which maintained a diffusion barrier. New membrane formation and the generation of cell surface polarity therefore precede initiation of TJ formation. Moreover, assembly of TJ marker protein precisely at the apical-basolateral membrane boundary was preserved in the complete absence of intercellular contacts and adhesion. Thus, the mechanism of TJ biogenesis in the Xenopus early embryo relies on intrinsic cues of a cell autonomous mechanism. These data reveal a distinction between Xenopus and mammalian early embryos in the origin and mechanisms of epithelial cell polarization and TJ formation during cleavage of the egg.  相似文献   

8.
The c-myc proto-oncogene is expressed as a maternal protein during oogenesis in Xenopus laevis, namely, in nondividing cells. A delayed translation of c-myc mRNA accumulated in early oocytes results in the accumulation of the protein during late oogenesis. The oocyte c-myc protein is unusually stable and is located in the cytoplasm, contrasting with its features in somatic cells. A mature oocyte contains a maternal c-myc protein stockpile of 4 x 10(5) to 6 x 10(5) times the level in a somatic growing cell. This level of c-myc protein is preserved only during the cleavage stage of the embryo. Fertilization triggers its rapid migration into the nuclei of the cleaving embryo and a change in the phosphorylation state of the protein. The c-myc protein content per nucleus decreases exponentially during the cleavage stage until a stoichiometric titration by the embryonic nuclei is reached during a 0.5-h period at the midblastula stage. Most of the maternal c-myc store is degraded by the gastrula stage. These observations implicate the participation of c-myc in the events linked to early embryonic development and the midblastula transition.  相似文献   

9.
10.
Using a human transforming growth factor beta 1 (TGF beta) cDNA probe, we have detected an RNA species migrating at about 1.7 kilobases in cultured primary chicken embryo chondrocytes that is distinct from chicken TGF beta 1. The cloning and sequencing of cDNAs corresponding to this chondrocyte RNA demonstrate that it represents a new member of the TGF beta family, which we have named TGF beta 4. Unlike previously described TGF beta which are 390 to 414 amino acids long, the predicted precursor protein of TGF beta 4 is only 304 amino acids and does not appear to contain a signal peptide. Also unique to this new TGF beta is an insertion of two amino acids near the N-terminus of the processed peptide which would result in a 114 amino acid mature protein after cleavage from the precursor at a tetrabasic arg-arg-arg-arg site. The nine cysteine residues characteristic of all TGF beta are conserved. TGF beta 4 shows 82%, 64%, and 71% identity with the amino acid sequences of processed TGF beta 1, 2, and 3, respectively.  相似文献   

11.
12.
Fragments of rough endoplasmic reticulum or Golgi complex isolated from normal adult rat liver homogenates were injected into one cell of cleaving two-cell Xenopus laevis embryos and the effects on development were monitored during early cleavage by morphological analysis. Scanning electron microscopy revealed the formation of large cells on the injected side of the embryos. Such large cells were not present in controls and thus were considered to have been formed as a consequence of delayed cleavage. Delay of cleavage was obtained with as little as 1 ng of membrane protein giving a ratio of membrane protein to embryo protein of 1:10(5). Cytological observations of microinjected embryos confirmed the occurrence of delayed cytokinesis and suggested that nuclear division became asynchronous. Since rough microsomes from proliferating tissues (i.e., livers with primary tumors and livers undergoing regeneration) showed little or no effect on cytokinesis after microinjection into early embryos, we conclude that cytoplasmic membranes may exhibit cell-cycle-specific properties important for normal development.  相似文献   

13.
Activation of interleukin-1 beta by a co-induced protease   总被引:13,自引:0,他引:13  
The proteolytic generation of mature interleukin-1 beta (IL-1 beta) from its inactive precursor does not proceed by a conventional pathway for hormonal processing. Pro-IL-1 beta is found dispersed in the cytoplasm, and there are no basic amino acid residues or other commonly recognized processing sites adjoining the mature N-terminus. Processing appears to occur during release of the hormone. In the present study, we have identified a specific protease that generates mature IL-1 beta from the precursor. This enzyme is co-induced with the hormone, and it differs in its cleavage specificity and inhibitor sensitivity from all known proteases.  相似文献   

14.
15.
In mammalian cells, E-type cyclins (E1 and E2) are generally believed to be required for entry into S phase. However, in mice, cyclin E is largely dispensable for normal embryogenesis. Moreover, Drosophila cyclin E plays a critical role in cell fate determination in neural lineages independently of proliferation. Thus, the functions of cyclin E, particularly during early development, remain elusive. Here, we investigated the requirement for E-type cyclins during Xenopus embryogenesis. Although cyclin E1 has been reported as a maternal cyclin, inhibition of its translation in the embryo caused no serious defects. We isolated a Xenopus homologue of human cyclin E2, which was zygotically expressed. Sufficient inhibition of its expression led to death at late gastrula, while partial inhibition allowed survival. These observations indicate distinct roles for Xenopus cyclins E1 and E2, and an absolute requirement of cyclin E2 for Xenopus embryogenesis.  相似文献   

16.
We addressed the potential role of cell-laminin interactions during epaxial myotome formation in the mouse embryo. Assembly of the myotomal laminin matrix occurs as epaxial myogenic precursor cells enter the myotome. Most Myf5-positive and myogenin-negative myogenic precursor cells localise near assembled laminin, while myogenin-expressing cells are located either away from this matrix or in areas where it is being assembled. In Myf5(nlacZ/nlacZ) (Myf5-null) embryos, laminin, collagen type IV and perlecan are present extracellularly near myogenic precursor cells, but do not form a basement membrane and cells are not contained in the myotomal compartment. Unlike wild-type myogenic precursor cells, Myf5-null cells do not express the alpha6beta1 integrin, a laminin receptor, suggesting that integrin alpha6beta1-laminin interactions are required for myotomal laminin matrix assembly. Blocking alpha6beta1-laminin binding in cultured wild-type mouse embryo explants resulted in dispersion of Myf5-positive cells, a phenotype also seen in Myf5(nlacZ/nlacZ) embryos. Furthermore, inhibition of alpha6beta1 resulted in an increase in Myf5 protein and ectopic myogenin expression in dermomyotomal cells, suggesting that alpha6beta1-laminin interactions normally repress myogenesis in the dermomyotome. We conclude that Myf5 is required for maintaining alpha6beta1 expression on myogenic precursor cells, and that alpha6beta1 is necessary for myotomal laminin matrix assembly and cell guidance into the myotome. Engagement of laminin by alpha6beta1 also plays a role in maintaining the undifferentiated state of cells in the dermomyotome prior to their entry into the myotome.  相似文献   

17.
Lamin proteins are components of metazoan cell nuclei. During evolution, two classes of lamin proteins evolved, A- and B-type lamins. B-type lamins are expressed in nearly all cell types and in all developmental stages and are thought to be indispensable for cellular survival. In contrast, A-type lamins have a more restricted expression pattern. They are expressed in differentiated cells and appear late in embryogenesis. In the earliest steps of mammalian development, A-type lamins are present in oocytes, pronuclei and during the first cleavage stages of the developing embryo. But latest after the 16-cell stage, A-type lamin proteins are not any longer detectable in embryonic cells. Amphibian oocytes and early embryos do not express lamin A. Moreover, extracts of Xenopus oocytes and eggs have the ability to selectively remove A-type lamins from somatic nuclei. This observation and the restricted expression pattern suggest that the presence of lamin A might interfere with developmental processes in the early phase of embryogenesis. To test this, we ectopically expressed lamin A during early embryonic development of Xenopus laevis by microinjection of synthetic mRNA. Here, we show that introducing mature lamin A does not interfere with normal development. However, expression of prelamin A or lamin A variants that cannot be fully processed cause severe disturbances and lead to apoptosis during gastrulation. The toxic effect is due to lack of the conversion of prenylated prelamin A to its mature form. Remarkably, even a cytoplasmic prelamin A variant that is excluded from the nucleus drives embryos into apoptosis.  相似文献   

18.
Development of human fetal airways requires interaction of the respiratory epithelium and the extracellular matrix through integrins. Nevertheless, the specific roles of beta(1)-integrins during development and tubular morphogenesis are still unknown. To analyze beta(1)-integrin localization and influence during migration, we developed a model of human fetal tracheal explants growing on collagen and overlaid with a second layer of collagen to form a sandwich. In this configuration, cord and tubule formation proceeded normally but were inhibited by incubation with anti-beta(1)-integrin subunit antibodies. On a collagen matrix, beta(1)-integrins were immunolocalized on the entire plasma membrane of migrating epithelial cells and almost exclusively on the basal plasma membrane of nonmigratory epithelial cells. In a sandwich configuration, beta(1)-integrins became detectable in the cytoplasm of epithelial cells. Coating cultures with collagen transiently altered the morphology of migrating cells and their speed and direction of migration, whereas incubation with anti-beta(1)-integrin subunit antibodies irreversibly altered these parameters. These observations suggest that the matrix environment, by modulating beta(1)-integrin expression patterns, plays a key role during tubular morphogenesis of human fetal tracheal epithelium, principally by modulating epithelial cell migration.  相似文献   

19.
Interleukin-1 beta (IL-1 beta) is derived from an inactive precursor by proteolytic cleavage. To study IL-1 beta processing, we expressed the precursor in Escherichia coli, partially purified it, and used it as a substrate for various potentially relevant protease preparations. The precursor alone was virtually inactive, but incubation with membranes from human monocytes or myeloid cell lines yielded a 500-fold increase in IL-1 bioactivity. Western blot analysis of the incubated material showed that the 31,000-Da precursor is broken down to three major products, ranging from 17,400 to about 19,000 Da. The most active of these products is the smallest one, and it co-migrates during electrophoresis with mature IL-1 beta. Four purified known proteases were also tested for their effect on precursor IL-1 beta, and none of these products co-migrated with the mature protein. Chymotrypsin and Staphylococcus aureus protease yielded slightly larger products, which were highly active. Elastase and trypsin yielded substantially larger products, and these had little IL-1 activity. The products of three of the known proteases were identified by NH2-terminal sequencing. These results show conclusively that proteolysis of precursor IL-1 beta generates biological activity and that the cleavage must occur close to the mature NH2 terminus.  相似文献   

20.
Summary An attempt was made to understand the ways in which ‘newly inserted’ membrane was organised in relation to existing membrane during early cleavage of the mouse embryo by (i) monitoring the redistribution of a variety of surface-binding ligands (applied to the embryo during the previous cell cycle) and (ii) analysing the localisation of newly synthesised lipid at defined stages during the second cell cycle. The membrane dynamics of the embryo appear similar to those of somatic cells during cytokinesis and/or motility, and are consistent with previous suggestions (Pratt 1985) that the main cytocortical domains of the polarised 8-cell blastomere may start to diverge during early cleavage as a result of localised assembly and reorganisation of the embryo cytocortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号