首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

2.
Nobel PS 《Plant physiology》1968,43(5):781-787
A light-induced shrinkage of chloroplasts in vivo could be detected with chloroplasts isolated within 2 minutes of harvesting pea plants. As determined both by packed volume and Coulter counter, the mean volume of chloroplasts from plants in the dark was 39 μ3, whereas it was 31 μ3 for chloroplasts from plants in the light. Upon illumination of the plants, the half-time for the chloroplast shrinkage in vivo was about 3 minutes, and the half-time for the reversal in the dark was about 5 minutes. A plant growth temperature of 20° was optimal for the volume change. The chloroplast shrinkage was half-maximal for a light intensity of 400 lux incident on the plants and was light-saturated near 2000 lux. The light-absorbing pigment responsible for the volume change was chlorophyll. This light-induced shrinkage resulted in a flattening and slight indenting of the chloroplasts. This chloroplast flattening upon illumination of the plants may accompany an increase in the photosynthetic efficiency of chloroplasts.  相似文献   

3.
Tomohiko Kuwabara  Norio Murata 《BBA》1982,680(2):210-215
The 33-kDa protein was purified in a high yield from thylakoid membranes of spinach chloroplasts. The extinction coefficient and A1%1cm value at 276 nm of the protein were 22000 M?1·cm?1 and 6.8, respectively. The 33-kDa protein and a polypeptide appearing at 32 kDa in the SDS-polyacrylamide gel electrophoresis of thylakoid membranes were compared by peptide mapping after limited proteolysis. This indicates that the 32-kDa band is entirely due to the 33-kDa protein. The molar ratio of chlorophyll to the 33-kDa protein in the chloroplasts was estimated to be 300. This suggests that one photosynthetic unit possesses one or two molecules of the 33-kDa protein.  相似文献   

4.
Robinson SP 《Plant physiology》1985,79(4):996-1002
Spinach leaf chloroplasts isolated in isotonic media (330 millimolar sorbitol, −1.0 megapascals osmotic potential) had optimum rates of photosynthesis when assayed at −1.0 megapascals. When chloroplasts were isolated in hypertonic media (720 millimolar sorbitol, −2.0 megapascals osmotic potential) the optimum osmotic potential for photosynthesis was shifted to −1.8 megapascals and the chloroplasts had higher rates of CO2-dependent O2 evolution than chloroplasts isolated in 330 millimolar sorbitol when both were assayed at high solute concentrations.

Transfer of chloroplasts isolated in 330 millimolar sorbitol to 720 millimolar sorbitol resulted in decreased chloroplast volume but this shrinkage was only transient and the chloroplasts subsequently swelled so that within 2 to 3 minutes at 20°C the chloroplast volume had returned to near the original value. Thus, actual steady state chloroplast volume was not decreased in hypertonic media. In isotonic media, there was a slow but significant uptake of sorbitol by chloroplasts (10 to 20 micromoles per milligram chlorophyll per hour at 20°C). Transfer of chloroplasts from 330 millimolar sorbitol to 720 millimolar sorbitol resulted in rapid uptake of sorbitol (up to 280 micromoles per milligram chlorophyll per hour at 20°C) and after 5 minutes the concentration of sorbitol inside the chloroplasts exceeded 500 millimolar. This uptake of sorbitol resulted in a significant underestimation of chloroplast volume unless [14C]sorbitol was added just prior to centrifuging the chloroplasts through silicone oil. Sudden exposure to osmotic stress apparently induced a transient change in the permeability of the chloroplast envelope since addition of [14C]sorbitol 3 minutes after transfer to hypertonic media (when chloroplast volume had returned to normal) did not result in rapid uptake of labeled sorbitol.

It is concluded that chloroplasts can osmotically adjust in vitro by uptake of solutes which do not normally penetrate the chloroplast envelope, resulting in a restoration of normal chloroplast volume and partially preventing the inhibition of photosynthesis by high solute concentrations. The results indicate the importance of matching the osmotic potential of isolation media to that of the tissue, particularly in studies of stress physiology.

  相似文献   

5.
Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L   总被引:8,自引:8,他引:0       下载免费PDF全文
Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate.  相似文献   

6.
Lack of a suitable assay has thwarted attempts to measure cytochrome c-552 in dark-grown wild type cells of Euglena gracilis var. bacillaris in mutants and in other situations where the concentrations are low. Purification methods are described based on electrofocusing which provide a cytochrome c-552 preparation homogeneous enough to elicit a single reactive antibody in rabbits; this antibody is then used as a specific and sensitive assay for cytochrome c-552. Dark-grown cells of wild type and of mutants O1BS, O2BX, G1BU and P1BXL (which make normal sized chloroplasts with abnormal internal structure in the light) have 0.02 to 0.1 × 10−11 micromoles of cytochrome c-552 per cell, 10 to 150 times less than light-grown cells. Light-grown cells of these mutants and of wild type show a ratio of chlorophyll to cytochrome of about 300 (mole to mole). Cytochrome c-552 is undetectable in dark-grown Y1BXD, Y3BUD, and W34ZUD which cannot carry plastid development beyond the proplastid in light; the light-grown cells of these mutants have levels of cytochrome similar to or lower than dark-grown wild type cells. Cytochrome c-552 is undetectable in light- and dark-grown mutants in which plastid DNA is undetectable (such as Y2BUL, W3BUL, W8BHL, and W10BSmL) consistent with the view, but not proving, that this molecule may be coded, at least in part, in plastid DNA. During light-induced chloroplast development in resting cells, cytochrome c-552 formation behaves in all respects like chlorophyll except that the dark-grown cells contain low amounts of the cytochrome c-552 but lack chlorophyll. Thus, both cytochrome c-552 and chlorophyll show the same lag period even when the length is changed by nutritional manipulation; preillumination largely eliminates the lag in the formation of both molecules, cycloheximide and streptomycin both inhibit the biosynthesis of chlorophyll and cytochrome c-552 in the same manner, and the formation of both during chloroplast development is strictly light-dependent. It is shown that chloroplasts isolated from Euglena by methods thought to give intact organelles, lack 95% of the cytochrome c-552; this and the loss of similar molecules may explain why these isolated chloroplasts are not photosynthetically active.  相似文献   

7.
Spectrophotometric and kinetic measurements were applied to yield photosystem (PS) stoichiometries and the functional antenna size of PSI, PSIIα, and PSIIβ in Zea mays chloroplasts in situ. Concentrations of PSII and PSI reaction centers were determined from the amplitude of the light-induced absorbance change at 320 and 700 nm, which reflect the photoreduction of the primary electron acceptor Q of PSII and the photooxidation of the reaction center P700 of PSI, respectively. Determination of the functional chlorophyll antenna size (N) for each photosystem was obtained from the measurement of the rate of light absorption by the respective reaction center. Under the experimental conditions employed, the rate of light absorption by each reaction center was directly proportional to the number of light-harvesting chlorophyll molecules associated with the respective photosystem. We determined NP700 = 195, Nα = 230, Nβ = 50 for the number of chlorophyll molecules in the light-harvesting antenna of PSI, PSIIα, and PSIIβ, respectively. The above values were used to estimate the PSII/PSI electron-transport capacity ratio (C) in maize chloroplasts. In mesophyll chloroplasts C > 1.4, indicating that, under green actinic excitation when Chl a and Chl b molecules absorb nearly equal amounts of excitation, PSII has a capacity to turn over electrons faster than PSI. In bundle sheath chloroplasts C < 1, suggesting that such chloroplasts are not optimally poised for linear electron transport and reductant generation.  相似文献   

8.
1. The chlorophyll-protein compound of the spinach leaf has been studied in the air-driven ultracentrifuge using the Svedberg light-absorption method, and a direct-reading refractive index method. 2. When the untreated extracts are centrifuged at low speeds, the green protein sediments with a purely random spread of particle sizes confirming the fact that the protein is not in true solution. 3. In the presence of digitonin, bile salts, and sodium desoxycholate, the extracts are clarified. These detergents split the chlorophyll from the protein and the protein itself shows a sedimentation constant of 13.5 x 10–13 equivalent to a molecular weight of at least 265,000 as calculated from Stokes'' law. This probably represents the minimum size of the protein in native form. 4. Sodium dodecyl sulfate, a detergent which also clarifies the leaf extracts, shows a different behavior. The prosthetic group remains attached to the protein but the protein is split into smaller units. In 0.25 per cent SDS, S 20 is 2.6 x 10–13 over a pH range of 5 to 9, although at the acid pH chlorophyll is converted to phaeophytin. In 2.5 per cent SDS, S 20 is 1.7 x 10–13 suggesting a further splitting of the protein. 5. No differences in behavior were found for the various chloroplast pigments.  相似文献   

9.
Recent studies have shown that guard cell and coleoptile chloroplasts appear to be involved in blue light photoreception during blue light-dependent stomatal opening and phototropic bending. The guard cell chloroplast has been studied in detail but the coleoptile chloroplast is poorly understood. The present study was aimed at the characterization of the corn coleoptile chloroplast, and its comparison with mesophyll and guard cell chloroplasts. Coleoptile chloroplasts operated the xanthophyll cycle, and their zeaxanthin content tracked incident rates of solar radiation throughout the day. Zeaxanthin formation was very sensitive to low incident fluence rates, and saturated at around 800–1000 mol m–2 s–1. Zeaxanthin formation in corn mesophyll chloroplasts was insensitive to low fluence rates and saturated at around 1800 mol m–2 s–1. Quenching rates of chlorophyll a fluorescence transients from coleoptile chloroplasts induced by saturating fluence rates of actinic red light increased as a function of zeaxanthin content. This implies that zeaxanthin plays a photoprotective role in the coleoptile chloroplast. Addition of low fluence rates of blue light to saturating red light also increased quenching rates in a zeaxanthin-dependent fashion. This blue light response of the coleoptile chloroplast is analogous to that of the guard cell chloroplast, and implicates these organelles in the sensory transduction of blue light. On a chlorophyll basis, coleoptile chloroplasts had high rates of photosynthetic oxygen evolution and low rates of photosynthetic carbon fixation, as compared with mesophyll chloroplasts. In contrast with the uniform chloroplast distribution in the leaf, coleoptile chloroplasts were predominately found in the outer cell layers of the coleoptile cortex, and had large starch grains and a moderate amount of stacked grana and stroma lamellae. Several key properties of the coleoptile chloroplast were different from those of mesophyll chloroplasts and resembled those of guard cell chloroplasts. We propose that the common properties of guard cell and coleoptile chloroplasts define a functional pattern characteristic of chloroplasts specialized in photosensory transduction.Abbreviations Ant or A antheraxanthin - dv/dt fluorescence quenching rate - Fm maximum yield of fluorescence with all PS II reaction centers closed - Fo yield of instantaneous fluorescence with all PS II reaction centers open - Vio or V violaxanthin - Zea or Z zeaxanthin  相似文献   

10.
We recently reported that autophagy plays a role in chloroplasts degradation in individually-darkened senescing leaves. Chloroplasts contain approximately 80% of total leaf nitrogen, mainly as photosynthetic proteins, predominantly ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco). During leaf senescence, chloroplast proteins are degraded as a major source of nitrogen for new growth. Concomitantly, while decreasing in size, chloroplasts undergo transformation to non-photosynthetic gerontoplasts. Likewise, over time the population of chloroplasts (gerontoplasts) in mesophyll cells also decreases. While bulk degradation of the cytosol and organelles is mediated by autophagy, the role of chloroplast degradation is still unclear. In our latest study, we darkened individual leaves to observe chloroplast autophagy during accelerated senescence. At the end of the treatment period chloroplasts were much smaller in wild-type than in the autophagy defective mutant, atg4a4b-1, with the number of chloroplasts decreasing only in wild-type. Visualizing the chloroplast fractions accumulated in the vacuole, we concluded that chloroplasts were degraded by two different pathways, one was partial degradation by small vesicles containing only stromal-component (Rubisco containing bodies; RCBs) and the other was whole chloroplast degradation. Together, these pathways may explain the morphological attenuation of chloroplasts during leaf senescence and describe the fate of chloroplasts.Key words: Arabidopsis, autophagy, chloroplast, dark treatment, leaf senescence, nutrients recyclingThe most abundant chloroplast protein is Rubisco, comprising approximately 50% of the soluble protein.1 The amount of Rubisco decreases rapidly in the early phase of leaf senescence, and more slowly in the later phase. During senescence, chloroplasts gradually shrink and their numbers gradually decrease in mesophyll cells.2,3 During leaf senescence, leaves lose approximately 75% of their Rubisco, while chloroplast numbers decrease by only about 15%.4 Previous studies showed chloroplasts localized within the central vacuole by electron microscopy, indicating chloroplast degradation in the highly hydrolytic vacuole.5 However, there was no direct evidence showing translocation of chloroplasts from the cytosol to the vacuole, and the mechanism of transportation was also unclear.Recent reverse genetic approaches are helping to elucidate the autophagy system in plants, which has a similar molecular mechanism as in yeast.611 In Arabidopsis (Arabidopsis thaliana), atg mutants have phenotypically accelerated leaf senescence, insufficient root elongation in nutrient starvation condition and reduced seeds yields, therefore, autophagy is considered to be important for nutrient recycling especially nutrient starvation and senescence in plants.12In Arabidopsis, individually darkened rosette leaves (IDLs) exhibit enhanced senescence.13 Appling IDLs treatment as an experimental model of leaf senescence, we recently demonstrated that chloroplasts are degraded in two different pathways by autophagy, one for RCBs,14,15 and one for whole chloroplast.16 Darkened leaves became pale in 3 to 5 days treatment, while illuminated parts normally grow in both wild-type and autophagy defective mutant, atg4a4b-1. Furthermore, genes specifically expressed during senescence, SAG12 and SEN1, were rapidly upregulated, meanwhile, photosynthetic genes, such as RBCS2B and CAB2B, were gradually downregulated. All analyzed ATG genes were also upregulated under IDL treatment, which suggests that autophagy is important in IDL senescence. It has been reported that approximately three quarter genes of upregulated in IDL were also upregulated in naturally senescing leaves, including the ATG genes.17 This suggests that the autophagy pathways used in IDLs are also used in naturally senescing leaves.Over the 5 day treatment period, chloroplasts of wild-type IDL shrink to approximately one third their original size. In atg4a4b-1, by contrast, chloroplasts shrinkage occurred immediately after the start of IDL treatment after which no further shrinkage was noted. While the shrunk chloroplasts in fixed cells of wild-type were still smooth and round, while wrinkly chloroplasts were observed in atg4a4b-1. At same time, in the living mesophyll cells of wild-type IDL, RCBs accumulated in the vacuole (Fig 1B). The shrinkage of chloroplasts may be due to the consumption of the chloroplast envelope by RCB formation. Immunological quantification of inner and outer envelope proteins might confirm this hypothesis. The chloroplast number was also gradually decreased in IDL of wild-type plants, but no decline in chloroplast number was noted in atg4a4b-1. Chloroplasts exhibiting chlorophyll auto-fluorescence were found in the vacuole of wild-type IDLs, but not in atg4a4b-1 IDLs. These results show that whole chloroplast degradation is also performed by autophagy. However, the transport pathway of whole chloroplasts into the vacuole remains unclear. The chloroplast, even in its shrunken state, is a large organelle, and the autophagosome, the carrier bodies of autophagy, which usually target small spherical organelles like mitochondria and peroxisomes, may be incapable of isolating large organelles. In the yeast autophagy system, specific cellular organelles and fractions are also transported via vacuolar membrane invagination using the microautophagy system.18 RCB uptake into the vacuole is termed macroautophagy, while larger organelles, such as chloroplasts, are engulfed in a process known as microautophagy. Whether there exists a molecular difference between these processes, or whether this is an arbitrary division based solely on the size of the consumed body is unclear.Open in a separate windowFigure 1Visualization of stroma-targeted DsRed and chlorophyll autofluorescence in living mesophyll cells of wild-type plants by laser-scanning confocal microscopy. A excised control leaf (A, Light) and an individually darkened leaf (B, IDL) from plants grown under 14 h-photoperiod condition and a leaf from whole-plant darkened condition (WD, C) for 5days were incubated with 1 µM concanamycin A in 10 mM MES-NaOH (pH 5.5) at 23C° for 20 h in darkness. Stroma-targeted DsRed appears green and chlorophyll fluorescence appears red. In merged images, overlap of DsRed and chlorophyll fluorescence appears yellow. Small vesicles with stromal-targeted DsRed, i.e. RCBs, can be found in the vacuole (A, B). In IDL (B), massive accumulation of stroma-targeted DsRed is entirely seen in the vacuolar lumen and chloroplasts losing DsRed fluorescence are found in some cells. Bars = 50 µm.Whole darkened plants exhibit retarded leaf aging, in contrast to the accelerated senescence in IDLs.13 Whole darkened plants suppress leaf senescence with the leaves retaining green color. After 5 days, in the mesophyll cells of whole darkened plants, any translocation of chloroplast components, stroma-targeted DsRed, RCBs, and whole chloroplasts, into the vacuole could hardly be detected (Fig. 1C). This suggests that autophagy is not induced by darkness alone, and is associated closely with senescence. ATG genes were downregulated in the whole darkened wild-type plants less than control plants during the treatment. Previous studies have shown that following about 5 day period of whole plant darkening, atg mutants lose their ability to protect themselves against photo-damage.7 Upon return to the light, these plant quickly undergo terminal photo-bleaching.Concentrations of chlorophyll, soluble protein, leaf nitrogen and Rubisco rapidly declined under IDL condition of both wild-type and atg4a4b-1. Considering the accumulated fluorescence of stroma-targeted Ds-Red in the vacuole and autophagy dependent size shrinkage of chloroplasts in IDL, in wild-type plants RCB autophagy appear to be responsible for a sizable proportion of chloroplast protein degradation. In atg4a4b-1 which cannot form RCBs, alternative degradation pathways must be upregulated, with chloroplast proteases the most likely candidates. Intriguingly, the decrease in Rubisco concentration proceeds at the almost identical rates in both wild-type and atg4a4b-1 plants, despite the different degradation pathways. It seems likely that the rate of Rubisco degradation may be regulated at an early step in the degradation pathway, by some, as yet unknown, factors.Chloroplasts appear to have the ability to control their volume during cell division, dividing and increasing their density up to the certain level,19 and transferring their cellular components between them via stromules.20 How chloroplasts are able to regulate their volume remains unclear, but it seems likely that chloroplasts grow and divide, like any other bacteria, as long as sufficient resources remain in the environment, in this case the cell. Total chloroplast volume, therefore, may be limited by the availability of carbon, nitrogen, or other nutrients in the cell during leaf emergence. Chloroplasts may be also able to reduce and control their volumes during leaf senescence via multiple degradation pathways. Our next goal is to estimate the contribution of both RCBs and whole chloroplasts autophagy in chloroplast protein degradation during natural leaf senescence. Further investigations are required for understanding the specific molecular mechanisms of RCB production and whole chloroplast degradation.  相似文献   

11.
Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 μmol mg−1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 μmol mg−1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mm, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 μmol mg−1 Chl. In contrast, ≥85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplast.  相似文献   

12.
Several effectors from phytopathogens usually target various cell organelles to interfere with plant defenses, and they generally contain sequences that direct their translocation into organelles, such as chloroplasts. In this study, we characterized a different mechanism for effectors to attack chloroplasts in wheat (Triticum aestivum). Two effectors from Puccinia striiformis f. sp. tritici (Pst), Pst_4, and Pst_5, inhibit Bax-mediated cell death and plant immune responses, such as callose deposition and reactive oxygen species (ROS) accumulation. Gene silencing of the two effectors induced significant resistance to Pst, demonstrating that both effectors function as virulence factors of Pst. Although these two effectors have low sequence similarities and lack chloroplast transit peptides, they both interact with TaISP (wheat cytochrome b6–f complex iron–sulfur subunit, a chloroplast protein encoded by nuclear gene) in the cytoplasm. Silencing of TaISP impaired wheat resistance to avirulent Pst and resulted in less accumulation of ROS. Heterogeneous expression of TaISP enhanced chloroplast-derived ROS accumulation in Nicotiana benthamiana. Co-localization in N. benthamiana and western blot assay of TaISP content in wheat chloroplasts show that both effectors suppressed TaISP from entering chloroplasts. We conclude that these biotrophic fungal effectors suppress plant defenses by disrupting the sorting of chloroplast protein, thereby limiting host ROS accumulation and promoting fungal pathogenicity.

Despite the lack of chloroplast transit peptide, rust effectors affect chloroplast-mediated defenses by suppressing import of host Fe–S protein to chloroplast to promote pathogenicity of stripe rust.  相似文献   

13.

Background

The mechanism of the light-dependent movements of chloroplasts is based on actin and myosin but its details are largely unknown. The movements are activated by blue light in terrestrial angiosperms. The aim of the present study was to determine the role of myosin associated with the chloroplast surface in the light-induced chloroplast responses in Arabidopsis thaliana. The localization of myosins was investigated under blue light intensities generating avoidance and accumulation responses of chloroplasts. The localization was compared in wild type plants and in phot2 mutant lacking the avoidance response.

Results

Wild type and phot2 mutant plants were irradiated with strong (36 µEm−2s−1) and/or weak (0.8 µEm−2s−1) blue light. The leaf tissue was immunolabeled with antimyosin antibodies. Different arrangements of myosins were observed in the mesophyll depending on the fluence rate in wild type plants. In tissue irradiated with weak blue light myosins were associated with chloroplast envelopes. In contrast, in tissue irradiated with strong blue light chloroplasts were almost myosin-free. The effect did not occur in red light and in the phot2 mutant.

Conclusions

Myosin displacement is blue light specific, i.e., it is associated with the activation of a specific blue-light photoreceptor. We suggest that the reorganization of myosins is essential for chloroplast movement. Myosins appear to be the final step of the signal transduction pathway starting with phototropin2 and leading to chloroplast movements.Key Words: Arabidopsis, blue light, chloroplast movements, myosins, phototropins  相似文献   

14.
Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m−2·s−1 or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality of the seedlings after removal from storage.  相似文献   

15.
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C4 plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at 559 nm and 553 nm, and the photoreduction of methyl viologen from H2O. (The rate of methyl viologen photoreduction in bundle sheath chloroplasts was 40% of that of mesophyll chloroplasts.)  相似文献   

16.
A mutant of Arabidopsis thaliana with reduced content of C18:3 and C16:3 fatty acids in membrane lipids exhibited a 45% reduction in the cross-sectional area of chloroplasts and had a decrease of similar magnitude in the amount of chloroplast lamellar membranes. The reduction in chloroplast size was partially compensated by a 45% increase in the number of chloroplasts per cell in the mutant. When expressed on a chlorophyll basis the rates of CO2-fixation and photosynthetic electron transport were not affected by these changes. Fluorescence polarization measurements indicated that the fluidity of the thylakoid membranes was not significantly altered by the mutation. Similarly, on the basis of temperature-induced fluorescence yield enhancement measurements, there was no significant effect on the thermal stability of chlorophyll-protein complexes in the mutant. These observations suggest that the high content of trienoic fatty acids in chloroplast lipids may be an important factor regulating organelle biogenesis but is not required to support normal levels of the photosynthetic activities associated with the thylakoid membranes.  相似文献   

17.
Lipid compositions of undifferentiated maize (Zea mays) chloroplasts, capable of fixing CO2, were compared with the lipid compositions of mature chloroplasts, which do not fix CO2, located in both the mesophyll and bundle sheath cells. The major lipids found in all three chloroplast types were the glycolipids, monogalactosyl diglyceride and digalactosyl diglyceride, followed by decreasing amounts of sulfolipid, phosphatidyl glycerol, phosphatidyl choline, phosphatidyl inositol, and diphosphatidyl glycerol. Quantitative differences in lipid components were observed among the chloroplast types. The mesophyll and bundle sheath maize chloroplasts differed in their chlorophyll a/chlorophyll b ratios (2.27 and 4.13 respectively) and their content of glycolipid relative to chlorophyll (51.8% glycolipid to 20.9% chlorophyll and 84.5% glycolipid to 10.1% chlorophyll respectively). A comparison between the lipid compositions of maize mesophyll chloroplasts and mesophyll chloroplasts obtained from spinach, sugar beet, and tobacco showed many similarities.  相似文献   

18.
Uptake of l-[1-14C]ascorbate by intact ascorbate-free spinach (Spinacia oleracea L. cv Vitalr) chloroplasts has been investigated using the technique of silicone oil filtering. Rates greater than 100 micromoles per milligram chlorophyll per hour (external concentration, 10 millimolar) of ascorbate transport were observed. Ascorbate uptake into the sorbitol-impermeable space (stroma) followed the Michaelis-Menten-type characteristic for substrate saturation. A Km of 18 to 40 millimolar was determined. Transport of ascorbate across the chloroplast envelope resulted in an equilibrium of the ascorbate concentrations between stroma and medium. A pH optimum of 7.0 to 7.5 and the lack of alkalization of the medium upon ascorbate uptake suggest that only the monovalent ascorbate anion is able to cross the chloroplast envelope. The activation energy of ascorbate uptake was determined to be 65.8 kilojoules (16 kilocalories) per mole (8 to 20°C). Interference of ascorbate transport with substrates of the phosphate or dicarboxylate translocator could not be detected, but didehydroascorbate was a competitive inhibitor. Preloading of chloroplasts with didehydroascorbate resulted in an increase of Vmax but did not change the Km for ascorbate. Millimolar concentrations of the sulfhydryl reagent p-chloromercuriphenyl sulfonate inhibited ascorbate uptake. The data are interpreted in terms of ascorbate uptake into chloroplasts by the mechanism of facilitated diffusion mediated by a specific translocator.  相似文献   

19.
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX–FTR–TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX–FTR–TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.

Thiol-dependent redox regulatory and antioxidant systems act concertedly to modulate chloroplast metabolism and signaling function.

Advances
  • Plant chloroplasts harbor a complex redox network composed of the FDX–FTR–TRXs pathway, linking redox regulation to light, and NTRC, an NADPH-dependent system required for the activity of TRXs. Both systems adjust chloroplast performance to environmental cues.
  • A relevant function of NTRC is redox control of 2-Cys PRXs, which maintains the reductive activity of chloroplast TRXs in the light. The NTRC–2-Cys PRXs redox system helps fine-tune the redox state of chloroplast enzymes thereby adjusting photosynthetic performance to changes in light.
  • 2-Cys PRXs participate in the rapid oxidative inactivation of chloroplast enzymes in the dark, mediating the transfer of reducing equivalents from reduced enzymes, via TRXs, to hydrogen peroxide.
  • Involvement of redox regulation in chloroplast retrograde signaling modulates early stages of plant development and response to environmental stress.
  相似文献   

20.
Thermostability of the photosynthetic apparatus of abscisic acid (ABA)-treated seedlings of barley (Hordeum vulgare) was studied by light-scattering and by fluorescence measurements of isolated chloroplasts. ABA treatment markedly decreased heat damage of the chloroplast ultrastructure; an exogenous ABA concentration of 10−5 molar was most effective. Heat-induced increase of the 77 kilodalton fluorescence ratio F740/F685 was also smaller at this ABA concentration. The heat-induced increase of the initial chlorophyll fluorescence level (Fo) was virtually eliminated in ABA-treated (10−5 molar) chloroplasts up to 45°C and slightly increased at 50°C, relative to control chloroplasts where Fo increased even at 35°C and reached its maximal value at 45°C. In control chloroplasts, Fo increased with a 5-minute pretreatment temperature, an effect observed as low as 35°C. Fo was maximal at 45°C. In contrast, chloroplasts treated with 10−5 molar ABA did not exhibit a heat-induced increase in Fo until 50°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号