首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
To understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes (‘Cleopatra’ and ‘Willow leaf’ mandarins), which differ for Na+ and Cl accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification. Salt-responsive proteins were involved in several functions, including photosynthetic processes, ROS scavenging, stress defence, and signalling. Genotype factors affect the salt-responsive pattern, especially that of carbon metabolism. The no ion accumulator ‘Cleopatra’ mandarin genotype showed the highest number of salt-responsive proteins, and up-regulation of Calvin cycle-related proteins. Conversely the ion accumulator ‘Willow leaf’ mandarin showed high levels of several photorespiration-related enzymes. A common set of proteins (twelve spots) displayed higher levels in salt-stressed leaves of 2× and 4× ‘Cleopatra’ and 4× ‘Willow leaf’ mandarin. Interestingly, antioxidant enzymes and heat shock proteins showed higher constitutive levels in 4× ‘Cleopatra’ mandarin and 4× ‘Willow leaf’ mandarin compared with the cognate 2× genotype. This work provides for the first time information on the effect of 8 weeks of salt stress on citrus genotypes contrasting for ion accumulation and their cognate autotetraploids. Results underline that genetic factors have a predominant effect on the salt response, although a common stress response independent from genotype was also found.  相似文献   

5.
Plants grown in natural environment are regularly subjected to different combinations of abiotic stresses. Recent studies revealed that citrus plants subjected to a combination of severe drought and high temperatures displayed specific physiological, hormonal, molecular and metabolic responses. In the present study, we have performed a long‐term experiment combining moderate drought and heat in Cleopatra mandarin to evaluate the impact of the stress‐sequence, intensity and duration. Our results support previous observation of high sensitivity of Cleopatra mandarin to abiotic stresses that include high temperatures. In this sense, a combination of drought and heat stress negatively impacts Cleopatra seedlings independently of the drought intensity. However, some responses to combined drought and heat depend on drought intensity, especially those involved in stomatal regulation. The intricate natural environment, abiotic stress combinations and global climatic changes increase the complexity of studying plant responses to stress factors in the laboratory. Consequently, new experimental approaches taking in consideration different stress combinations should be implemented to study the viability of Cleopatra mandarin as a rootstock in a rapidly changing environment.  相似文献   

6.
7.
Abiotic stress in plants causes accumulation of reactive oxygen species (ROS) leading to the need for new protein synthesis to defend against ROS and to replace existing proteins that are damaged by oxidation. Functional plant ribosomes are critical for these activities, however we know little about the impact of oxidative stress on plant ribosome abundance, turnover, and function. Using Arabidopsis cell culture as a model system, we induced oxidative stress using 1 µm of H2O2 or 5 µm menadione to more than halve cell growth rate and limit total protein content. We show that ribosome content on a total cell protein basis decreased in oxidatively stressed cells. However, overall protein synthesis rates on a ribosome abundance basis showed the resident ribosomes retained their function in oxidatively stressed cells. 15N progressive labelling was used to calculate the rate of ribosome synthesis and degradation to track the fate of 62 r‐proteins. The degradation rates and the synthesis rates of most r‐proteins slowed following oxidative stress leading to an ageing population of ribosomes in stressed cells. However, there were exceptions to this trend; r‐protein RPS14C doubled its degradation rate in both oxidative treatments. Overall, we show that ribosome abundance decreases and their age increases with oxidative stress in line with loss of cell growth rate and total cellular protein amount, but ribosome function of the ageing ribosomes appeared to be maintained concomittently with differences in the turnover rate and abundance of specific ribosomal proteins. Data are available via ProteomeXchange with identifier PXD012840.  相似文献   

8.
A proteomic approach was employed to investigate the cold stress-responsive proteins in trifoliate orange (Poncirus trifoliata (L.) Raf.), which is a well-known cold tolerant citrus relative and widely used as rootstock in China. Two-year-old potted seedlings were exposed to freezing temperature (−6°C) for 50 min (nonlethal) and 80 min (lethal), and the total proteins were isolated from leaves of the treated plants. Nine differentially accumulated proteins over 2-fold changes in abundance were identified by two-dimensional gel electrophoresis and mass spectrometry. Among these proteins, a resistance protein induced by the nonlethal cold treatment (protein spot #2 from P. trifoliata) was selected as target sequence for degenerated primer design. By using the designed primers, a PCR product of about 700 bp size was amplified from P. trifoliata genomic DNA, which was further cloned and sequenced. A nucleotide sequence of 676 bp was obtained and named Ptcorp. Blast retrieval showed that Ptcorp shared 88% homology with an EST of cold acclimated Bluecrop (Vaccinium corymbosum) library (Accession number: CF811080), indicating that Ptcorp had association with cold acclimation. Semiquantitative RT-PCR analysis demonstrated that Ptcorp gene was up-regulated by cold stress which was consistent with the former result of protein expression profile. As the resistance protein (NBS-LRR disease resistance protein family) gene was up-regulated by cold stress in trifoliate orange and satsuma mandarin, it may imply that NBS-LRR genes might be associated with cold resistance in citrus.  相似文献   

9.
10.
11.
In industrial process, yeast cells are exposed to ethanol stress that affects the cell growth and the productivity. Thus, investigating the intracellular state of yeast cells under high ethanol concentration is important. In this study, using DNA microarray analysis, we performed comprehensive expression profiling of two strains of Saccharomyces cerevisiae, i.e., the ethanol-adapted strain that shows active growth under the ethanol stress condition and its parental strain used as the control. By comparing the expression profiles of these two strains under the ethanol stress condition, we found that the genes related to ribosomal proteins were highly up-regulated in the ethanol-adapted strain. Further, genes related to ATP synthesis in mitochondria were suggested to be important for growth under ethanol stress. We expect that the results will provide a better understanding of ethanol tolerance of yeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
In this work we investigated the function of abscisic acid (ABA) as a long-distance chemical signal communicating water shortage from the root to the shoot in citrus plants. Experiments indicated that stomatal conductance, transpiration rates, and leaf water potential decline progressively with drought. ABA content in roots, leaves, and xylem sap was also increased by the drought stress treatment three- to sevenfold. The addition of norflurazon, an inhibitor of ABA biosynthesis, significantly decreased the intensity of the responses and reduced ABA content in roots and xylem fluid, but not in leaves. Polyethylene glycol (PEG)-induced osmotic stress caused similar effects and, in general, was counteracted only by norflurazon at the lowest concentration (10%). Partial defoliation was able to diminish only leaf ABA content (22.5%) at the highest PEG concentration (30%), probably through a reduction of the active sites of biosynthesis. At least under moderate drought (3–6 days without irrigation), mechanisms other than leaf ABA concentration were required to explain stomatal closure in response to limited soil water supply. Measurements of xylem sap pH revealed a progressive alkalinization through the drought condition (6.4 vs. 7.1), that was not counteracted with the addition of norflurazon. Moreover, in vitro treatment of detached leaves with buffers iso-osmotically adjusted at pH 7.1 significantly decreased stomatal conductance (more than 30%) as much as 70% when supplemented with ABA. Taken together, our results suggest that increased pH generated in drought-stressed roots is transmitted by the xylem sap to the leaves, triggering reductions in shoot water loss. The parallel rise in ABA concentration may act synergistically with pH alkalinization in xylem sap, with an initial response generated from the roots and further promotion by the stressed leaves.  相似文献   

13.
14.
In response to adverse environmental conditions, plants modify their metabolism to adapt to the new conditions. To differentiate common responses to abiotic stress from specific adaptation to a certain stress condition, two citrus rootstocks (Carrizo citrange and Cleopatra mandarin) with a different ability to tolerate stress were subjected to soil flooding and drought, two water stress conditions. In response to these conditions, both genotypes showed altered root proline and phenylpropanoid levels, especially cinnamic acid, which was a common feature to Carrizo and Cleopatra. This was correlated with alterations in the levels of phenylpropanoid derivatives likely involved in lignin biosynthesis. In the regulatory part, levels of both stress hormones abscisic acid (ABA) and jasmonic acid (JA) decreased in response to soil flooding irrespective of the genotype’s relative flooding tolerance, but, on the other hand, the concentration of both metabolites increased in response to drought, showing a transient accumulation of JA after a few days and a progressive pattern of ABA increase. These responses are probably associated with different regulatory processes under soil flooding and drought. In addition, alterations in indole acetic acid (IAA) levels in citrus roots seemed to be associated with particular stress tolerance. Moreover, both genotypes exhibited a low degree of overlap in the metabolites induced under similar stress conditions, indicating a specific mechanism to cope with stress in plant species. Results also indicated a different metabolic basal status in both genotypes that could contribute to stress tolerance.  相似文献   

15.
16.
17.
Seedling stage is a critical period for survival and growth under drought stress. In the current study, we determined effects of drought stress on physiological and biochemical parameters of leaves and roots of Lycium ruthenicum Murr. seedling. The variables measured were lipid peroxidation (in terms of malondialdehyde (MDA) content), osmotic substances (free proline, soluble protein, and soluble sugar), and antioxidative enzymes (peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT)). Free proline, soluble sugar, and MDA of leaves and roots increased with increasing stress level. Leaves displayed higher accumulations of free proline and MDA than roots. However, roots showed higher total soluble sugar than leaves. Under drought stress, soluble proteins in leaves and roots decreased initially and then increased. Meanwhile, measured proteins were higher in leaves. Under drought stress, SOD, POD, and CAT activities in leaves increased initially and then decreased but increased with increasing drought stress level in roots. Under drought the level of accumulation of osmotics was higher in the leaves than in the roots, while increased activity of antioxidant enzymes persisted in the stressed roots longer that in the leaves.  相似文献   

18.
Citrullus colocynthis (L.) Schrad, closely related to watermelon, is a member of the Cucurbitaceae family. This plant is a drought-tolerant species with a deep root system, widely distributed in the Sahara-Arabian deserts in Africa and the Mediterranean region. cDNA amplified fragment length polymorphism (cDNA-AFLP) was used to study differential gene expression in roots of seedlings in response to a 20% polyethylene glycol-(PEG8000) induced drought stress treatment. Eighteen genes which show similarity to known function genes were confirmed by quantitative relative (RQ) real-time RT-PCR to be differentially regulated. These genes are involved in various abiotic and biotic stress and developmental responses. Dynamic changes with tissue-specific pattern were detected between 0 and 48 h of PEG treatment. In general, the highest induction levels in roots occurred earlier than in shoots, because the highest expression was detected in roots following 4 and 12 h, in shoots following 12 and 48 h of drought. These drought-responsive genes were also affected by the plant hormones abscisic acid (ABA), salicylic acid (SA), or jasmonic acid (JA), indicating an extensive cross-talk between drought and plant hormones. Collectively, these results will be useful to explore the functions of these multiple signal-inducible genes for unveiling the relationship and crosstalk between different signaling pathways.  相似文献   

19.
Maternal host choices during oviposition by herbivorous insects determine the fitness of their offspring and may be influenced by environmental changes that can alter host‐plant quality. This is of particular relevance to ‘push‐pull’ cropping systems where host preferences are exploited to manage insect pest populations. We tested how drought stress in maize and companion plants that are used in these systems affect oviposition preference, larval feeding, and development of the spotted stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae). Five host species were tested (all Poaceae): maize (Zea mays L.), Napier grass (Pennisetum purpureum Schumach), signal grass [Brachiaria brizantha (A. Rich) Stapf], Brachiaria cv. ‘Mulato’, and molasses grass [Melinis minutiflora (Beauv.)]. Under drought stress, maize experienced as much oviposition as control unstressed maize in choice and no‐choice experiments. Similarly, larval leaf damage was not significantly different in drought‐stressed vs. unstressed maize. In contrast, oviposition occurred less on drought‐stressed than on unstressed Napier and signal grass. Oviposition acceptance and leaf damage remained low in both drought‐stressed and unstressed molasses grass and Mulato. Larval survival and development remained high in drought‐stressed maize, but not in Napier, signal, and molasses grass and Mulato, where survival and development were low in both drought‐stressed and unstressed plants. Our results indicate that herbivore responses to drought‐stressed plants depend on the plant species and that drought stress can change host preference and acceptance rankings. In particular, trap‐crops such as Napier grass may not divert oviposition from the main maize crop under drought stress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号