首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of quinacrine and 9-amino acridine with right-handed B-form, left-handed Z-form, and left-handed protonated (H(L))-form structures of polydG-me(5)dC was investigated by circular dichroism and absorption spectral analysis. Both the compounds bind strongly to the B-form structure and convert the Z-form and H(L)-form back to the bound right-handed form. Circular dichroic data revealed that the conformation at the binding site is right-handed even though adjacent regions of the polynucleotide may have left-handed conformation. The rate and extent of B-form-to-Z-form transition were decreased in the presence of these compounds. Scatchard analysis revealed that both quinacrine and 9-amino acridine bind strongly to the polynucleotide in the B-form in a noncooperative manner, in sharp contrast to the highly cooperative binding to the Z-form and H(L)-form. Results indicated that the cooperative binding of these drugs with the Z-form and the H(L)-forms was associated with a sequential conversion of the polynucleotide from a left-handed to a bound right-handed conformation. Experimental data enabled the calculation of the number of base pairs of Z-form (7-8 with quinacrine and 9-amino acridine) and H(L)-form (4 and 25, respectively, with quinacrine and 9-amino acridine) that adopt a right-handed conformation for each bound ligand. As these compounds are known to bind preferentially to alternating guanine--cytosine sequences, which are capable of easily undergoing the B-to-Z or B-to-H(L) transition, these effects may be important in understanding their biological activities.  相似文献   

2.
Spectroscopic studies on solutions of poly(dG-m5dC) over a wide range of salt concentration are presented. Low salt solutions [( Na+]) less than 2 mM) of poly(dG-m5dC) produce circular dichroism (CD) spectra typical of the left-handed, Z form at high salt [( Na+] = 1.75 M). Solutions of poly(dG-m5dC) at intermediate salt concentrations, e.g., 142 mM, yield CD spectra characteristic of the right-handed, B conformation. 31p NMR spectra of the low salt form of poly(dG-m5dC) reveal two well separated peaks, split by 1.4 ppm, consistent with a dinucleotide repeat. Kinetic studies show that the transition from the low salt form to teh right-handed B form is slow, as expected for a major conformational change. These results suggest that the Z conformation in poly(dG-m5dC) can be stabilized at very low salt as well as at high salt.  相似文献   

3.
The CD and fluorescence properties of mithramycin have been used to follow its complexation to cations such as Mg2+ and Zn2+ and the binding of these complexes to DNA. At low concentration (less than 2 microM) in aqueous solution, mithramycin is always in the dimeric state, the conformation of the dimer being either a right-handed screw when the dimer is neutral, or a left-handed screw when the dimer is negatively charged. In the deprotonated state the dimer can bind one cation forming a complex [M2+(Mit-)2] which has a right-handed screw conformation. The stability constants of the complex at 37 degrees C in 0.1 M KCl are 4 x 10(5) and 1 x 10(6) for Mg2+ and Zn2+, respectively. The complex in the right-handed screw conformation binds DNA. In this case the stability constants of the complex [M2+ (Mit-)2] increase and are 3.6 x 10(6) and 1.2 x 10(7) for Mg2+ and Zn2+, respectively.  相似文献   

4.
Absorbance and fluorescence methods were used to measure the binding of the anticancer drug daunomycin to poly (dGdC) under ionic conditions that initially favor the left-handed Z conformation of the polymer. Drug binding was cooperative under these conditions and may be fully accounted for by an allosteric model in which the drug binds preferentially (but not exclusively) to the right-handed B conformation and shifts the polymer from the Z to an intercalated right-handed conformation. Quantitative analysis of binding isotherms in terms of the allosteric model allowed for estimation of the equilibrium constants for the conversion of a base pair at a B-Z interface from the Z to the B conformation and for the formation of a base pair in the B conformation within a stretch of helix in the Z conformation. The free energy of the Z to B conversion of a base pair was calculated from this data and ranges from +0.03 to +0.3 kcal/mol over the NaCl range of 2.4-3.5 M. The free energy for the formation of a B-Z junction was nearly constant at +4.0 kcal/mol over the same range of NaCl concentrations. The salt dependence of the free energy of the Z to B transition indicates preferential Na+ binding to the Z form and that there is a net release of Na+ upon conversion of a base pair from the Z to the B conformation. The energetically unfavorable Z to B transition was found by this analysis to be driven by coupling to the energetically favorable interaction of daunomycin with B form DNA. In 3.5 M NaCl, for example, the free energy change for the overall reaction (Z DNA base pairs) + (daunomycin) in equilibrium with (right-handed complex) is -7.0 kcal/mol, nearly all of which is contributed by the binding of drug to B DNA. Analysis using the allosteric model also shows that the number of base pairs converted from the Z to the B conformation per bound drug molecule is salt dependent and provides evidence that drug molecules partition into regions of the polymer in the right-handed conformation.  相似文献   

5.
Interactions between Ni2+, Co2+ and purine bases have been studied by I.R. spectroscopy in the case of double stranded regularly alternating purine-pyrimidine polynucleotides poly d(A-T), poly d(A-C).poly d(G-T) and poly d(G-C). The spectra of polynucleotide films have been recorded in hydration and salt content conditions which correspond to the obtention of the classical right-handed (A,B) and left-handed (Z) helical conformations. Selective deuteration of the 8C site of purines has been obtained and is used to detect interactions between the transition metal ions and the adenine or guanine bases. The spectral region between 1500 and 1250 cm-1 corresponding to base in-plane vibrations and involving also the glycosidic linkage torsion is discussed in detail. The selective interaction between the transition metal ion and the 7N site of the purine base is considered to be partly responsible for the stabilization of the base in a syn conformation, which favours the adoption by the polynucleotide (poly d(G-C), poly d(A-C).poly d(G-T) or poly d(A-T)) of a Z type conformation.  相似文献   

6.
Wilma K. Olson 《Biopolymers》1978,17(4):1015-1040
Semiempirical potential energy functional used previously to account successfully for the mean-square unperturbed dimensions and nmr coupling constants of randomly coiling polynucleotides are used, after modifications, to account for base stacking and interstrand hydrogen bonding, and to evaluate the conformational energies of single- and double-stranded polynucleotide helices. Attention is focused upon the variety of A-genus helices with local backbone conformations resembling the known double-helical structures of RNA. Distinct structural differences between single- and double-stranded helices are predicted from the energy calculations. A second point of interest is the apparent failure of two conformationally identical left-handed polynucleotide chains to form a left-handed duplex. The third major observation of the study is the wide morphological variety of theoreticaly allowed right-handed polynucleotide duplexes. In addition to the familiar double helix stabilized by horizontal base stacking and hydrogen bonding, an unusual vertical double helix is predicted to form between complementary bases fixed in the unusual but not energetically forbidden high anti glycosyl conformation. Experimental results bearing upon the theoretical predictions are discussed.  相似文献   

7.
The two helical parameters n and h where n is the number of nucleotide residues per turn and h is the height per nucleotide residue have been evaluated for single stranded helical polynucleotide chains comprising C(3') -endo and C(2') endo class of nucleotides. The helical parameters are found to be especially sensitive to the C(4')-C(3') (sugar pucker) and the C(4')-C(5') torsions. The (n-h) plots display only one important helix forming domain for each class of nucleotides characterized by the sugar pucker and the C(4')-C(5') torsion. A correlation between the (n-h) plots and the known RNA (A,A') and DNA (A,B,C) helical forms has been established. It is found that all forms of helices except the C-DNA possess a favorable combination of P-O torsions. The analysis of the (n-h) plots suggests that C-DNA can have a conformation very similar to B-DNA. Although the (n-h) plots predict the stereochemical possibility of both right-handed and left-handed helices, nucleic acids apparently prefer right-handed conformation because of the energetics associated with the sugar-phosphate backbone and the base.  相似文献   

8.
The alternative structures of the synthetic poly(amino2dA-dT) duplex have been studied using infrared spectroscopy in films and in solution (D2O and H2O) in the presence and in the absence of magnesium salt. In solution without magnesium salt, the polynucleotide exists in a B genus conformation with some of the sugar puckers possibly in the C3'-endo/anti geometry. In magnesium-containing solution (66 mM MgCl2), however, we report infrared spectra of Mg(2+)-poly(amino2dA-dT) which have characteristic marker bands of the A form. Film samples in 70% relative humidity (RH) give similar infrared spectra to those of the polynucleotide obtained using Mg2+. Thus, when analyzed in comparison with previously reported infrared spectra of other oligo and polynucleotides, our data show that double helical poly(amino2dA-dT) goes into the same (or very closely related) conformation in dehydrated films as in solutions containing Mg2+.  相似文献   

9.
S A Riou  S L Hsu    H D Stidham 《Biophysical journal》1998,75(5):2451-2460
As normally studied, in the solid state or in solution, poly(beta-benzyl-L-aspartate) (PBLA) differs from the other helical polyamino acids in that its alpha-helical conformation is most stable in the left-handed rather than in the right-handed form. The slightly lower energy per residue for the left-handed form in PBLA is easily perturbed, however. The helical screw sense can be inverted in a polar environment and, upon heating above 100 degrees C, a distorted left-handed helix or omega-helix is irreversibly formed. From external reflectance Fourier transform infrared measurements at the air-water interface, the conformation of PBLA in the monolayer state is directly established for the first time. The infrared frequencies of the amide bands suggest that right-handed alpha-helices are formed on the surface of water immediately after spreading the monolayers and independently of the polypeptide conformational distribution in the spreading solution. The right-handed helical form prevails throughout the slow compression of the Langmuir monolayers to collapsed films. The helical screw sense can be reversed by lowering the polarity of the aqueous phase. In addition, an alternate conformation similar to the omega-helix forms on addition of small amounts of isopropanol to the aqueous subphase, and appears to be an intermediate in the helix-helix transition.  相似文献   

10.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7462-7471
The equilibrium binding of ethidium to the right-handed (B) and left-handed (Z) forms of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) was investigated by optical and phase partition techniques. Ethidium binds to the polynucleotides in a noncooperative manner under B-form conditions, in sharp contrast to highly cooperative binding under Z-form conditions. Correlation of binding isotherms with circular dichroism (CD) data indicates that the cooperative binding of ethidium under Z-form conditions is associated with a sequential conversion of the polymer from a left-handed to a right-handed conformation. Determination of bound drug concentrations by various titration techniques and the measurement of circular dichroism spectra have enabled us to calculate the number of base pairs of left-handed DNA that adopt a right-handed conformation for each bound drug; 3-4 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to the right-handed form for each bound ethidium, while approximately 25 and 7 base pairs switch conformations for each bound ethidium in complexes with poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2, respectively. The induced ellipticity at 320 nm for the ethidium-poly(dG-dC).poly(dG-dC) complex in 4.4 M NaCl indicates that the right-handed regions are nearly saturated with ethidium even though the overall level of saturation is very low. The circular dichroism data indicate that ethidium intercalates to form a right-handed-bound drug region, even at low r values where the CD spectra show that the majority of the polymer is in a left-handed conformation.  相似文献   

11.
Chromomycin A3 binds to left-handed poly(dG-m5dC)   总被引:1,自引:0,他引:1  
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.  相似文献   

12.
The right-handed (B) conformation of poly[d(G-C)] in 7.5 mM sodium cacodylate and 25% ethylene glycol can be readily converted to the left-handed (Z) conformation by the addition of 250 microM MnCl2 and this transition can be reversed by chelation of the Mn ions with EDTA or by addition of NaCl. This ability to obtain such reversible transitions in solvent and solute conditions which allow DNA-protein interactions and their assessment by c.d. permitted an analysis of the effect of purified histones, polyamino acids, protamine and polyamines on these transitions. Individual core histones H3, H4, H2a and H2b or protamine stabilised the Mn-induced Z form and prevented the transition to B DNA normally observed after chelation with EDTA or on dialysis to physiological salt concentrations. A similar suppression of Z leads to B transition was also achieved with poly-L-arginine (but not with poly-L-lysine). In contrast, histones H1 and H5 promoted the Z leads to B transition. Polyamines (spermine and spermidine) converted the B form to another right-handed (A) form which transformed to the Z form after the addition of EDTA and this Z form was restored to the B conformation on the addition of NaCl. These results suggest that sequence-dependent variations in the conformation of natural DNA may be modulated by interaction with histones and other basic cellular components and may provide a conformational basis for nucleosome formation and possibly for the control of gene expression.  相似文献   

13.
The conformation of DNA that originates from association of complementary single-stranded circles (form V DNA) is investigated in solution at low salt concentration. It is shown that circular dichroism extended to the far ultraviolet region (down to 165 nm) represents a powerful tool for determination of the handedness of double helical DNAs in solution. The positive intense band at 186 nm followed by a strong negative band around 170 nm is characteristic of all right-handed helical forms (B,A) of DNA, whereas the circular dichroism spectrum of the Z form of poly[d(G-C)] of opposite helical sense represents a quasi inversion of these far ultraviolet bands. Thus, form V DNA is found to represent a co-existence of left-handed Z-type and right-handed B double helical stretches in addition to negative superturns. The Raman spectrum of form V DNA provides further support for the contribution of a left-handed double helical conformation, as shown by comparison to the high resolution Raman spectra of poly[d(G-C)] in the Z and B forms.The analysis of present spectroscopic data and the analysis of occurrence of alternating [d(G-C)] purine-pyrimidine sequences in the form V DNA used strongly suggest that in DNA of natural sequence, topological constraint may generate left-handed double helices, a conformation thought so far to be limited to the alternating [d(G-C)] sequences. Such structure could play a role in recognition and regulation of gene expression.  相似文献   

14.
The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2'endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and riboguanosine residues in nucleosides and nucleotides prefer the syn-C2'endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5'-H and the N3 of the base and, a few syn-C3'endo conformations are also observed. Evidence is presented for the occurrence of the C3'endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4'-C5' and P-O5' bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3'endo conformation and the distorted backbone sugar-phosphate bonds (C4'-C5' and P-O5') as in the earlier right-handed case.  相似文献   

15.
The conformation of the double-stranded, mixed ribodeoxyribo polynucleotide, poly (rG-dC).poly (rG-dC), has been examined in the presence of tetraalkyl ammonium ions. Tetramethyl ammonium ion stabilizes the "low salt" Z conformation (1) of the polymer from submillimolar to molar concentrations of the counterion. In the presence of tetraethyl and tetrapropyl ammonium ions the polymer exists in the low salt Z form up to 2 mM concentration of the counterions and then flips to the right hand helical A form. With tetrabutyl ammonium counterions the polymer is in an A conformation at low ion concentrations and converts to a B form at concentrations greater than thirty millimolar. These results are interpreted in terms of electrostatic and solvent interactions of the polynucleotide.  相似文献   

16.
Mithramycin (MTR) is an antitumor compound that inhibits RNA and DNA polymerase action by forming a non covalent complex with double strand DNA, in the presence of divalent cations. We have shown that in the presence of Mg2+, MTR binds to right-handed poly(dG-m5dC) as a dimer in the right-handed screwness conformation but cannot bind to left-handed poly(dG-m5dC).  相似文献   

17.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract

The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2′endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and ribo- guanosine residues in nucleosides and nucleotides prefer the syn-C2′endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5′- H and the N3 of the base and, a few syn-C3′endo conformations are also observed. Evidence is presented for the occurrence of the C3′endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4′-C5′ and P-O5′ bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3′endo conformation and the distorted backbone sugar-phosphate bonds (C4′-C5′ and P- O5′) as in the earlier right-handed case.  相似文献   

19.
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.  相似文献   

20.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号