首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
The phosphomannomutase 2 gene (PMM2; MIM 601785) has been identified as the carbohydrate-deficient glycoprotein syndrome type 1A gene (CDGS type 1A; MIM 212065). The gene spans 8 exons and 741 bp of coding DNA. Previously, we have identified 20 different mutations in the PMM2 gene using mutation screening with single-stranded conformation polymorphism (SSCP) and sequencing of DNA from 61 CDGS type 1A patients. Because eight of these could not be detected by SSCP, we were not satisfied with the sensitivity of the mutation detection technique used. Thus, we wanted to investigate if denaturing high-performance liquid chromatography (DHPLC) was a more suitable mutation screening method for PMM2. DHPLC was set up for PMM2 by optimizing eight different PCR fragments, one for each exon. The mutation detection was optimized empirically with PCR fragments from controls. First, control samples were run at a universal gradient and after modification and shortening of the gradient, also run at 10 different temperatures, 50-70 degrees C with 2-degree intervals, to enable setting of the temperature with the highest resolution. Then, PCR products with known mutations from the previous study were analyzed, and the results were compared to the control chromatograms for aberrations. We detected 19/20 mutations with DHPLC, and several mutations not detected by earlier screening techniques were readily detected by DHPLC. We conclude that DHPLC is a suitable detection technique for a rapid and reliable first scan of CDGS type 1A patients.  相似文献   

2.
Mutations in the dystrophin gene result in both Duchenne and Becher muscular dystrophies (DMD and BMD). Approximately 65% of all mutations causing DMD are deletions (60%) or duplications (5%) of large segments of this gene, spanning one exon or more. Due to the large size of the dystrophin gene (79 exons), finding point mutations has been prohibitively expensive and laborious. Recent studies confirm the utility of pre-screening methods, as denaturing high-performance liquid chromatography (DHPLC) analysis in the identification of point mutations in the dystrophin gene, with an increment of mutation detection rate from 65% to more than 92%. Here we suggest an alternative and convenient method of DHPLC analysis in order to find mutations in a more rapid and less expensive way by introducing the analysis of 16 couples of dystrophin amplicons, in biplex exons DHPLC runs. Using this new protocol of biplex exons DHPLC screening, new mutations were identified in four male patients affected by DMD who had tested negative for large DNA rearrangements.  相似文献   

3.
Tuberous sclerosis (TSC [MIM 191090 and MIM 191100]) is an autosomal dominant disorder characterized by hamartomas in many organs. Two thirds of cases are sporadic and are thought to represent new mutations. TSC is caused by mutations affecting either of the presumed tumor-suppressor genes, TSC1 and TSC2. Both appear to function as tumor suppressors, because somatic loss or intragenic mutation of the corresponding wild-type allele is seen in the associated hamartomas. Here we report the first comprehensive mutation analysis of TSC1 and TSC2 in a cohort of 150 unrelated TSC patients and their families, using heteroduplex and SSCP analysis of all coding exons and using pulsed-field gel electrophoresis and conventional Southern blot analysis and long PCR to screen for large rearrangements. Mutations were characterized in 120 (80%) of the 150 cases, affecting TSC1 in 22 cases and TSC2 in 98 cases. TSC1 mutations were significantly underrepresented in sporadic cases (P=. 000185). Twenty-two patients had TSC2 missense mutations that were found predominantly in the GAP-related domain (eight cases) and in a small region encoded in exons 16 and 17, between nucleotides 1849 and 1859 (eight cases), consistent with the presence of residues performing key functions at these sites. In contrast, all TSC1 mutations were predicted to be truncating, consistent with a structural or adapter role for the encoded protein. Intellectual disability was significantly more frequent in TSC2 sporadic cases than in TSC1 sporadic cases (P=.0145). These data provide the first representative picture of the distribution and spectrum of mutations across the TSC1 and TSC2 loci in clinically ascertained TSC and support a difference in severity of TSC1- and TSC2-associated disease.  相似文献   

4.
To detect mutations in the glucocerebrosidase gene in Gaucher disease patients, we used the recently described technique of single-strand conformation polymorphism (SSCP) analysis in combination with selective amplification. We analyzed exon 8, 9, 10 and 11 of the glucocerebrosidase gene; these exons were sequentially amplified using the selectively amplified products as templates. We found variant SSCP patterns corresponding to the presence or absence of the 6433C mutation, which was detected by NciI digestion analysis, in exon 10. Furthermore, we detected four variant SSCP patterns in exon 8, 10 and 11. Sequencing analysis consistently revealed four single-base substitutions in the corresponding exons, three novel missense mutations (5409A, 6375G and 6682T) and one silent polymorphism (6594A). These mutations were found only in one patient; therefore, these findings have confirmed the marked genetic heterogeneity of Gaucher disease. SSCP analysis in combination with selective amplification is a rapid and sensitive procedure for the screening of the mutations in the glucocerebrosidase gene of patients with Gaucher disease.  相似文献   

5.
Screening methods for unknown DNA sequence variations are laborious, expensive, and relatively insensitive. To evaluate the sensitivity and specificity of denaturing high-pressure liquid chromatography (DHPLC) screening for unknown protein C gene (PROC) mutations, we studied 31 PROC-deficient patients. Eleven amplimers containing 4 kb of the PROC gene and spanning all exons, splice junctions, and the putative promoter and 3'-untranslated regions were amplified by PCR for each patient. Each amplimer (n = 341) was sequenced with a fluorescence-based method, and screened by DHPLC. Sequencing identified 10 unique mutations and three polymorphisms. Combining all mutations and polymorphisms, 227 amplimers were homozygous wildtype, and 63 and 51 were heterozygous and homozygous mutant, respectively. DHPLC screening correctly identified all amplimers (100% sensitivity and specificity). DHPLC is a rapid, automated, sensitive and specific screening method for unknown mutations within the PROC gene, and may be a useful screening method for unknown mutations within other genes.  相似文献   

6.
The identification of mutations in the NF1 gene causing type 1 neurofibromatosis (NF1) has presented a considerable challenge because of the large size of the gene, the lack of significant mutational clustering, the diversity of the underlying pathological lesions and the presence of NF1 pseudogenes. Denaturing high performance liquid chromatography (DHPLC), a high throughput, non-hazardous and largely automated heteroduplex-based technique, is in many ways ideally suited to mutation detection in this condition. DHPLC was therefore optimised for the rapid screening of the 60 exons and splice junctions of the NF1 gene in patients with NF1. The sensitivity of DHPLC was evaluated in a retrospective study of a cohort of 111 unrelated NF1 patients with known germline mutations; 97% of mutations were detected. In a subsequent prospective analysis of 50 unrelated NF1 patients, germline mutations were identified in 34 individuals (68%), 22 of these alterations being novel. This represents the highest rate of mutation detection so far reported for the NF1 gene with a single screening technique and genomic DNA as a target.  相似文献   

7.
Introduction: Patients with Fanconi anemia (Fanc) are at risk of developing leukemia. Mutations of the group A gene (FancA) are most common. A multitude of polymorphisms and mutations within the 43 exons of the gene are described. To examine the role of heterozygosity as a risk factor for malignancies, a partially automatized screening method to identify aberrations was needed. We report on our experience with DHPLC (WAVE (Transgenomic)). Methods: PCR amplification of all 43 exons from one individual was performed on one microtiter plate on a gradient thermocycler. DHPLC analysis conditions were established via melting curves, prediction software, and test runs with aberrant samples. PCR products were analyzed twice: native, and after adding a WT-PCR product. Retention patterns were compared with previously identified polymorphic PCR products or mutants. Results and discussion: We have defined the mutation screening conditions for all 43 exons of FancA using DHPLC. So far, 40 different sequence variations have been detected in more than 100 individuals. The native analysis identifies heterozygous individuals, and the second run detects homozygous aberrations. Retention patterns are specific for the underlying sequence aberration, thus reducing sequencing demand and costs. DHPLC is a valuable tool for reproducible recognition of known sequence aberrations and screening for unknown mutations in the highly polymorphic FancA gene.  相似文献   

8.
In order to evaluate the sensitivity and specificity of the recently introduced high-throughput method DHPLC (denaturing high performance liquid chromatography) for mutation screening in the VHL tumor suppressor gene, we subjected DNA from 43 unrelated VHL patients with previously sequenced VHL germline mutations to this method. In addition, 36 genomic DNAs of unrelated individuals suspected of being VHL carriers but with unknown germline status were analyzed by DHPLC and sequencing. The aims of the present study were to compare mutation results obtained by direct sequencing and DHPLC, and a comparison of two different DHPLC systems. The sensitivity of DHPLC was tested with two commercial devices and protocols, i.e., the Varian-Helix system and the Wave Nucleic Acid Fragment Analysis system. Both resolved all but one mutation in exons 2 and 3 of the VHL gene. In contrast, the GC-rich exon 1 showed discrepancies in the rate of mutation detection. Whereas the Varian-Helix system detected 10/15 (67%) of the known mutations, the Wave Nucleic Acid Fragment Analysis system detected 13/14 (93%). All three mutations in samples with unknown mutation status were revealed by both systems raising the mutation detection rate to 72% and 94%, respectively. Cases with different substitutions at the same nucleotide showed different elution profiles, but similar elution profiles could be obtained from different mutations. The Wave Nucleic Acid Fragment Analysis system detected most VHL mutations; however, when a 100% detection rate is needed, sequencing is still required and must therefore be the standard VHL mutation detection procedure. Once a family-specific mutation has been established, DHPLC may be suitable for the rapid and cost-effective determination of VHL carrier status in family members.  相似文献   

9.
Mutation analysis of Taiwanese Wilson disease patients   总被引:5,自引:0,他引:5  
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper-transporting ATPase (ATP7B). In the present study, we report a molecular diagnosis method to screen the WD chromosome in patients or in heterozygotic carriers in Taiwan. Exons 8, 11, 12, 13, 16, 17, and 18 of ATP7B are selected for the screening of mutations. The most common mutation, Arg778Leu or Arg778Gln, was first screened by PCR-RFLP then we combined single-stranded conformation polymorphism (SSCP) analysis followed by direct DNA sequencing on the DNA fragments with mobility shift on SSCP analysis. The diagnostic rate was compared with standard ATP7B whole gene sequencing analysis. Ten different mutations were identified among 29 WD patients; among them four were novel (Ala1168Pro, Thr1178Ala, Ala1193Pro, and Pro1273Gln). The false positive rates were tested against 100 normal individuals and listed as follows: exon 8: 5%; exon 11: 4%; exon 12: 6%; exon 13: 5%; exon 16: 5%; exon 17: 3%; exon 18: 4%. The Arg778Leu mutation exhibited the highest allelic frequency (43.1%). The detection rate of WD chromosomes is 65.52%, which is as sensitive as whole gene sequencing scanning. According to our results, WD chromosomes in Taiwan are predominantely located at exons 8, 11, 12, 13, 16, 17, and 18. The standard sequencing analysis on the entire gene is time consuming. We recommend screening these 7 exons first on those individuals who have a higher risk in having WD, before whole gene and promoter sequencing analysis in Taiwan.  相似文献   

10.
Denaturing high performance liquid chromatography (DHPLC) has been described recently as a method for screening DNA samples for single nucleotide polymorphisms and inherited mutations. Thirty-eight DNAs, 22 of which were heterozygous for previously characterized rearranged transforming gene (RET) or cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations or polymorphisms, were examined using DHPLC analysis to assess the accuracy of this scanning method. Ninety-one per cent (20/22) of the PCR amplicons from specimens with heterozygous RET or CFTR sequence showed elution profiles distinct from corresponding homozygous normal patterns; whether the profiles for two amplicons containing heterozygous RET sequence were distinct from homozygous cases was equivocal. To investigate the usefulness of this method for detecting mutations in tumor DNAs, each of the phosphatase and tensin homologue deleted on chromosome ten gene (PTEN) exons were examined for mutations in 63 malignant gliomas. Seventeen PTEN PCR products from this series of brain tumors showed elution profiles indicating sample heterozygosity and in each instance conventional sequencing confirmed the presence of a mutation. PTEN amplicons containing exons 1, 3 and 5 were sequenced for each of the 63 tumor DNAs to determine whether any mutations may have escaped DHPLC detection, and this analysis identified one such alteration in addition to the eight mutations that DHPLC had revealed. In total, DHPLC identified 37 of 40 (92.5%) PCR products containing defined sequence variation and no alterations were indicated among 196 amplicons containing homozygous normal sequence.  相似文献   

11.
Mutation screening in 90 unrelated ADPKD1 patients was carried out on some of the exons in the single copy area (37, 38, 39, 44, 45) using genomic PCR and SSCP. Four novel mutations were found: a 15 bp in-frame deletion in exon 39 [nt11449 (del 15)], a 2 bp deletion in exon 44 [nt12252 (del 2)], a G insertion in exon 44 [nt12290 (Ins G)], and a GTT in-frame deletion in exon 45 [nt12601 (del 3)].  相似文献   

12.
Moore L  Godfrey T  Eng C  Smith A  Ho R  Waldman FM 《BioTechniques》2000,28(5):986-992
We have developed a fluorescence-based single strand conformation polymorphism (SSCP) method that offers fast and sensitive screening for mutations in exons 5-8 of the human p53 gene. The method uses an ABI 377 DNA sequencer for unique color detection of each strand, plus accurate alignment of lanes for better detection of mobility shifts. To validate the method, 21 cell lines with reported mutations in p53 exons 5-8 were analyzed by SSCP using various gel conditions. The sensitivity for mutation detection was 95% for all cell lines studied, and no false positives were seen in 10 normal DNA samples for all four exons. Experiments mixing known amounts of tumor and normal DNA showed that mutations were detected even when tumor DNA was mixed with 80% normal DNA. Fluorescent SSCP analysis using the ABI sequencer is a useful tool in cancer research, where screening large numbers of samples for p53 mutations is desired.  相似文献   

13.
Approximately 10% of all renal cell carcinomas (RCCs) present a distinctive papillary histology. Familial papillary RCC (PRCC) has been described, but the majority of cases appear to be sporadic. Recently, germline mutations in the MET proto-oncogene on chromosome 7 have been identified in families with hereditary PRCC. We evaluated 59 patients with PRCC for the frequency of MET germline mutations to determine the value of genetic screening of this patient population. Between 1976 and 1997, 165 patients were identified with PRCC by retrospective chart review. Fifty-nine of 133 surviving patients agreed to provide a family history, a blood specimen, and informed consent for genetic research. DNA was isolated from peripheral blood leukocytes. Denaturing high-performance liquid chromatography (DHPLC) followed by genomic sequencing was performed on eight exons of the MET proto-oncogene, including exons 5-7 of the extracellular domain, exon 14, and exons 16-19 of the tyrosine kinase domain. The 59 patients in this study included 49 men and 10 women with a mean age at diagnosis of 61 years. Bilateral and/or multifocal disease was present in 13 cases (22%). No germline mutations were detected in the studied exons of the MET proto-oncogene (exons previously reported to contain deleterious mutations in familial PRCC). No pathological MET proto-oncogene germline mutations were identified in 59 patients with PRCC. The germline mutation rate in this clinic-based population of individuals with PRCC approaches 0% (CI = 0-6.18). MET proto-oncogene germline mutation screening does not appear to be clinically indicated in patients with PRCC without additional evidence for a genetic predisposition (positive family history, unusual age at onset, bilateral disease).  相似文献   

14.
Sensitive and automated methods for the detection of DNA sequence variation are required for a wide variety of genetic studies. Diagnostic testing in human genetic disorders is one application of such methods. Tuberous sclerosis complex (TSC) is an autosomal dominant familial tumor syndrome characterized by the development of benign tumors (hamartomas) in multiple organs (OMIM # 19110, #191092). There is a high frequency of sporadic cases and significant demand from patients and families for genetic testing information. Two TSC genes have been identified (TSC1 and TSC2) and together account for all cases [1,2]. Here we report our methods for DHPLC analysis of the TSC1 gene and demonstrate the high sensitivity of this method in a blinded analysis of 21 TSC patients with known TSC1 mutations. In this series, DHPLC detected 27/28 (96%) known TSC1 sequence variations. The only sequence variation not identified by DHPLC in this study is a mosaic case.  相似文献   

15.
Reduced expression of the TSC2 tumour suppressor gene product, tuberin, has been reported in sporadic astrocytomas, suggesting that the TSC genes may play a role in formation of sporadic glial or glioneuronal tumours. We studied paired constitutional and tumour DNA samples from 100 patients with sporadic glial and glioneuronal tumours for loss of heterozygosity (LOH) at the TSC1 and TSC2 loci using a combination of seven previously reported and seven novel polymorphic markers. LOH was seen in 1/16 astrocytomas, 3/15 ependymomas, 5/16 gangliogliomas, 2/14 glioblastoma multiforme, 0/7 oligodendrogliomas, 0/7 tumours of mixed oligodendrocytic/astrocytic histology, 2/11 pilocytic astrocytomas and 0/1 subependymal giant cell astrocytomas informative at both loci. However, SSCP screening of all coding exons of the TSC1 or TSC2 genes in the tumours displaying LOH, and of both genes in 21 gangliogliomas, revealed no intragenic mutations. The lack of demonstrable inactivation of both alleles of either TSC gene in any of the tumours investigated suggests that they do not play a frequent role in the aetiology of sporadic glial or glioneuronal tumours.  相似文献   

16.
In the past few years, more than 20 different mutations have been reported in hyperphenylalaninemias. In southwestern Europe and Mediterranean countries, however, the mutant genotypes reported account for only a fraction (27%) of all mutant alleles at the phenylalanine hydroxylase (PAH) locus, and most of the mutations causing the disease remain unknown. In order to develop a strategy for rapid detection of mutation-containing exons, we applied the single-strand conformation-polymorphism (SSCP) technique to exons 3, 5, 7, and 12 of the PAH gene. We observed five abnormal patterns of migration in mutant PAH genes, and we consistently found base substitutions in the corresponding exons, with no false-positive results. By this procedure, two novel putative mutations were detected in the seventh exon of the PAH gene, (A259V and Y277D) and we were able to demonstrate that the delta I94, R158Q, R408W, and E280K mutations were easily detectable by the SSCP technique. This procedure is therefore of particular interest for rapid detection of mutation-containing exons and for determination of further genotype-phenotype correlations in hyperphenylalaninemias.  相似文献   

17.
Mutations in the ABCA1 gene are the cause of familial high density lipoprotein deficiency (FHD). Because these mutations are spread over the entire gene, their detection requires the sequencing of all 50 exons. The aim of this study was to validate denaturing high-performance liquid chromatography (DHPLC) in mutation detection as an alternative to systematic sequencing. Exons of the ABCA1 gene were amplified using primers employed for sequencing. Temperatures for DHPLC were deducted from a software and empirically defined for each amplicon. To assess DHPLC reliability, we tested 30 sequence variants found in FHD patients and controls. Combined DHPLC and sequencing was applied to the genotyping of new FHD patients. Most of the amplicons required from two to five temperature conditions to obtain partially denatured DNA over the entire amplicon length. Twenty-nine of the variants found by sequencing were detected by DHPLC (97% sensitivity). The detection of the last variant (in exon 40) required different primers and amplification conditions. DHPLC and sequencing analysis of new FHD patients revealed that all amplicons showing a heteroduplex DHPLC profile contained sequence variants. No variants were detected in amplicons with a homoduplex profile. DHPLC is a sensitive and reliable method for the detection of ABCA1 gene mutations.  相似文献   

18.
A number of techniques have been developed as primary screens to scan for DNA sequence variants, including denaturing gradient gel electrophoresis, denaturing high-performance liquid chromatography, single-strand conformation polymorphism and heteroduplex analysis. Variant alleles detected by these assays are subsequently characterised by DNA sequencing. Sequencing itself is rarely used as a primary screen because of labour intensity, cost, and, upon automation, occasional inaccuracy in identifying heterozygous sites. We have previously developed an approach based on coupling long-distance PCR (LD-PCR) to long-read direct sequencing to allow the detection of mutations in the approximately 1.1 kb exon 3 of MECP2. Our use of dye-labelled primers generated high-quality bi-directional sequence runs > 650 bp and allowed easy discrimination of heterozygous bases. We now describe the application of this approach to the detection of mutations in a considerably larger 6.35 kb LD-PCR fragment spanning 10 exons (exons 32-41) of the structurally complex, but genomically compact, TSC2 gene. In a blind analysis, 15/15 previously characterised mutations were successfully identified using seven overlapping bi-directional sequencing reactions. Our approach of long-read sequencing of long-distance PCR products may allow rapid sequencing of multiple exons of compact genes and may be appropriate as a highly sensitive primary screen for mutations.  相似文献   

19.
We describe here a new method to screen for unknown mutations in the low density lipoprotein (LDL) receptor gene by the use of capillary electrophoresis in single-strand conformation polymorphism (SSCP) analysis. To analyze the promoter and all 18 exons, 20 different amplification reactions were necessary. For each polymerase chain reaction (PCR), the forward and reverse primers were 5′ fluorescent-labelled with FAM and HEX, respectively. To test the accuracy of the newly developed method, 61 genetic variants distributed in 16 exons were analyzed. Under identical electrophoresis conditions (13 kV, 30°C, 30 min), 59 mutations were detected by a distinct abnormal SSCP pattern. The two remaining mutations showed only slight abnormalities, which could be amplified by increasing the electrophoresis temperature. The high accuracy, the degree of automation and the speed of analysis make fluorescence-based SSCP analysis with capillary electrophoresis ideal for rapid mutation screening and the technique is well-suited for clinical applications.  相似文献   

20.
Inactivating mutations in the TSC2 gene, consisting of 41coding exons in 40 kb on 16p13, cause the hamartoma syndrome tuberous sclerosis. During TSC2 mutational analysis we identified ten SNPs that occur within or close to exon boundaries at minor allele frequencies greater than 5%. We determined the haplotypes for six of these SNPs and the microsatellite marker kg8 in the 3' region of TSC2 in a set of 40 parent-child trios. The most common haplotypes accounted for 53%, 11%, 6%, and 5% of chromosomes. Thirty-eight TSC2 mutation-bearing haplotypes had a similar distribution, indicating that there was no haplotype that predisposed to mutation in this region of TSC2. Family analysis was possible in 12 sporadic cases, and indicated that the mother was the parent of origin in 7 cases (3 point mutations, 2 small deletions, 2 large deletions), while the father was in 5 cases (2 point mutations, 3 small deletions). We conclude that TSC2 mutations occur at substantial frequency on both the maternally and paternally derived TSC2 alleles, in contrast to many other genetic diseases including NF1. The observations have implications for genetic counseling in TSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号