首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously reported that HepG2 human hepatocarcinoma cells are sensitized to doxorubicin-induced apoptosis by the glucosylceramide synthase inhibitor d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) but not by the more specific inhibitor d,l-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). Herein we investigated whether the chemosensitizing action of PDMP impinged on any unspecific effect of this compound on doxorubicin-induced expression of p53 and/or p21(Cip1/Waf1), namely two proteins reported to modulate the apoptotic response to DNA-damaging agents, in a positive or negative fashion, respectively. We show that, in HepG2 cells, PDMP did not substantially affect doxorubicin-induced p53 upregulation, whereas drug-evoked upregulation of p21(Cip1/Waf1) was markedly attenuated. Although this outcome could be expected to account for the chemosensitizing effect of PDMP, impaired upregulation of p21(Cip1/Waf1), in the setting of unaltered p53 expression, was also observed in the case of PPPP. These results, while raising the possibility of a link between attenuation of drug-evoked p21(Cip1/Waf1) expression and redirection of (glyco)sphingolipid metabolism, show that, differently from other tumor systems, attenuation of doxorubicin-induced p21(Cip1/Waf1) expression is at least not sufficient to sensitize HepG2 cells to the apoptotic action of the drug.  相似文献   

2.
Several studies have shown that ceramide (CER) glucosylation contributes to drug resistance in multidrug-resistant cells and that inhibition of glucosylceramide synthase sensitizes cells to various drug treatments. However, the role of glucosylceramide synthase has not been studied in drug-sensitive cancer cells. We have demonstrated previously that the anthracycline daunorubicin (DNR) rapidly induces interphasic apoptosis through neutral sphingomyelinase-mediated CER generation in human leukemic cell lines. We now report that inhibition of glucosylceramide synthase using d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) protected U937 and HL-60 cells from DNR-induced apoptosis. Moreover, blocking CER glucosylation did not lead to increased CER levels but to increased CER galactosylation. We also observed that pretreating cells with galactosylceramide (GalCER) significantly inhibited DNR-induced apoptosis. Finally, we show that GalCER-enriched lymphoblast cells (Krabbe's disease) were significantly more resistant to DNR- and cytosine arabinoside-induced apoptosis as compared with normal lymphoblasts, whereas glucosylceramide-enriched cells (Gaucher's disease) were more sensitive. In conclusion, this study suggests that sphingomyelin-derived CER in itself is not a second messenger but rather a precursor of both an apoptosis second messenger (GD3) and an apoptosis "protector" (GalCER).  相似文献   

3.
PDMP (D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and PPMP (D,L-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol), inhibitors of glucosylceramide synthesis, blocked brefeldin A (BFA)- and nordihydroguaiaretic acid-induced dispersal of the Golgi and trans Golgi network, and Golgi-derived vesicles were retained in the juxtanuclear region. PDMP and PPMP did not stabilize microtubules but blocked nocodazole-induced extensive fragmentation and dispersal of the Golgi, and large Golgi vesicles were retained in the juxtanuclear region. PPMP is a stronger inhibitor of glucosylceramide synthesis than PDMP, but PDMP showed a stronger activity against BFA-induced retrograde membrane flow. However, PPMP showed a stronger activity for Golgi disruption and inhibition of anterograde trafficking from the endoplasmic reticulum, and rebuilding of the Golgi architecture. Cumulatively, these results suggest that sphingolipid metabolism is implicated in maintenance of the Golgi architecture and anterograde membrane flow from the endoplasmic reticulum but not in Golgi dispersal induced by BFA.  相似文献   

4.
The multidrug-resistant cancer cell lines NCI/AdR(RES) and MES-SA/DX-5 have higher glycolipid levels and higher P-glycoprotein expression than the chemosensitive cell lines MCF7-wt and MES-SA. Inhibiting glycolipid biosynthesis by blocking glucosylceramide synthase has been proposed to reverse drug resistance in MDR cells by causing an increased accumulation of proapoptotic ceramide during treatment of cells with cytotoxic drugs. We treated both multidrug-resistant cell lines with the glucosylceramide synthase inhibitors PDMP (d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol), C9DGJ (N-nonyl-deoxygalactonojirimycin) or C4DGJ (N-butyl-deoxygalactonojirimycin). PDMP achieved a significant reversal of drug resistance in agreement with previous reports. However, the N-alkylated iminosugars C9DGJ and C4DGJ, which are more selective glucosylceramide synthase inhibitors than PDMP, failed to cause any reversal of drug resistance despite depleting glycolipids to the same extent as PDMP. Our results suggest that (a) inhibition of glucosylceramide synthase does not reverse multidrug resistance and (b) the chemosensitization achieved by PDMP cannot be caused by inhibition of glucosylceramide synthase alone.  相似文献   

5.
The majority of metastatic melanomas are resistant to different chemotherapeutic agents, consequently, the search for novel anti-melanoma agents and adjuvant is urgent. Here, we found that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an inhibitor of glycosphingolipid biosynthesis, enhanced curcumin-induced cell growth inhibition and apoptosis in two melanoma cell lines (WM-115 and B16). PDMP facilitated curcumin-induced ceramide accumulation; the latter contributed to melanoma cell apoptosis. PDMP also dramatically enhanced curcumin-induced c-Jun N-terminal kinase activation, which was important to melanoma cell apoptosis. Meanwhile, curcumin plus PDMP treatment largely inhibited the activation of pro-survival PI3K/AKT signal pathway. In conclusion, PDMP-sensitized curcumin-induced melanoma cell growth inhibition and apoptosis in vitro due to changes of multiple signal events. Combining PDMP with curcumin may represent a new therapeutic intervention against melanoma.  相似文献   

6.
The aim of the current study is to investigate the effect of ceramides on genistein-induced anti-melanoma effects in vitro. We found that exogenously added cell-permeable short-chain ceramides (C6) dramatically enhanced genistein-induced growth inhibition and apoptosis in cultured melanoma cells. Genistein treatment only induced a moderate intracellular ceramides accumulation in B16 melanoma cells. Two different agents including 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a ceramide glucosylation inhibitor, and the sphingosine kinase-1 (SphK1) inhibitor II (SKI-II), a sphingosine (ceramides precursor) phosphorylation inhibitor, both facilitated genistein-induced ceramides accumulation and melanoma cell apoptosis. Co-administration of ceramide (C6) and genistein induced a significant Akt inhibition and c-jun-NH(2)-kinase (JNK) activation, caspase-3 cleavage and cytochrome c release. Caspase-3 inhibitor z-DVED-fmk, JNK inhibitor SP 600125, or to restore Akt activation by introducing a constitutively active form of Akt (CA-Akt) diminished ceramide (C6) and genistein co-administration-induced in vitro anti-melanoma effect. Our study suggests that increasing cellular level of ceramides may sensitize genistein-induced anti-melanoma effects.  相似文献   

7.
We reported that an inhibitor of sphingolipid biosynthesis, D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), blocks brefeldin A (BFA)-induced retrograde membrane transport from the Golgi complex to the endoplasmic reticulum (ER) (Kok et al., 1998, J. Cell Biol. 142, 25-38). We now show that PDMP partially blocks the BFA-induced ADP-ribosylation of the cytosolic protein BARS-50. Moreover, PDMP does not interfere with the BFA-induced inhibition of the binding of ADP-ribosylation factor (ARF) and the coatomer component beta-coat protein to Golgi membranes. These results are consistent with a role of ADP-ribosylation in the action of BFA and with the involvement of BARS-50 in the regulation of membrane trafficking.  相似文献   

8.
To clarify the metabolic bases of characteristic increases in the concentrations of glucosylceramide (CMH) and GM3 in peroxisome-defective mutant Chinese hamster ovary (CHO) cells (Z65), we measured the ceramide glucosyltransferase (CGT) and beta-glucosidase activities in Z65 and CHO-K1 cells, and found that the former enzyme was responsible for the accumulation of CMH in Z65 cells. Inhibition of CGT by D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) caused a marked reduction in a incorporation of [3-14C]serine to CMH in both CHO-K1 and Z65 cells, but resulted in the accumulation of ceramide in Z65 cells in a concentration higher than that in CHO-K1 cells. Then, we cloned the cDNA encoding CGT from CHO-K1 cells, which exhibited sequence homology with the human gene product (98.7%). Northern blot analysis of CGT revealed increased expression of it in Z65 cells compared with that in CHO-K1 cells, which probably caused the simultaneous increase in GM3. With an immunohistochemical procedure, GM3 was found to be more strongly expressed in the cell membrane of Z65 cells than in CHO-K1 cells.  相似文献   

9.
Ceramide has been suggested as an important mediator of apoptosis. In HT-29 colorectal cancer cells increased ceramide levels, induced by exogenous N-acetylsphingosine (NAS, also known as C2-ceramide) or by 1-phenyl-2-(decanoylamino)-3-morpholino-1-propanol (PDMP), inhibited the transport and processing of cathepsin D (CD), a lysosomal protease implicated in apoptosis of tumour cells. C2-dihydroceramide (DH-C2), an inactive analogue of NAS, had no effect on CD transport and maturation. The treatment with either NAS or PDMP was revealed to be cytotoxic for HT-29 cells and led to cell death with classical features of apoptosis. Morphological signs of apoptosis and DNA fragmentation became apparent only between 24 and 48 h of incubation and poly(ADP ribose)-polymerase cleavage, a hallmark of caspase 3 activity, occurred no earlier than 8 h from incubation. Secretion of proCD was almost abolished and the formation of double-chain mature CD was reduced and delayed by NAS, whereas PDMP largely inhibited the lysosomal targeting and maturation of proCD. NAS- and PDMP-induced alteration of proCD transport and maturation were apparent already 2 h after incubation with the drugs, which is much earlier than when classical biochemical and morphological evidence of apoptosis could be detected. These data indicate that alteration of CD (and possibly of other glycoproteins) transport along the secretory pathway due to increased levels of cell-associated ceramide is an early event in cells undergoing apoptosis.  相似文献   

10.
Regulation of capacitative Ca(2+) entry was studied in two different multidrug resistance (MDR) protein (MRP1) overexpressing cell lines, HT29(col) and GLC4/ADR. MRP1 overexpression was accompanied by a decreased response to thapsigargin. Moreover, inhibition of capacitative Ca(2+) entry by D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) was abolished in MRP1 overexpressing cells. Both PDMP and the MRP1 inhibitor MK571 greatly reduced InsP(3)-mediated (45)Ca(2+) release from intracellular stores in HT29 cells. Again, these effects were virtually abolished in HT29(col) cells. Our results point to a modulatory role of MRP1 on intracellular calcium concentration ([Ca(2+)](i)) homeostasis which may contribute to the MDR phenotype.  相似文献   

11.
We report that apoptosis induced by N-hexanoylsphingosine (C6-Cer) in CHP-100 human neuroepithelioma cells associates with accumulation of monohexosylsphingolipids produced not only by short-chain ceramide glycosylation but also through glycosylation of a ceramide pool endogenously produced. By high-performance thin layer chromatography on borate silica gel plates, newly formed monohexosylsphingolipids were identified as glucosylceramides (GluCer); however, accumulation of lactosylceramide or higher-order glycosphingolipids was not observed. GluCer accumulation was fully suppressed by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; moreover, while this inhibitor had no effect on cell viability when administered alone, it markedly potentiated the apoptotic effect of C6-Cer. These results provide evidence that activation of GluCer synthesis is an important mechanism through which CHP-100 cells attempt to escape ceramide-induced apoptosis.  相似文献   

12.
Ceramide, the basic structural unit of sphingolipids, controls the balance between cell growth and death by inducing apoptosis. We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H(2)O(2)) or by short-chain ceramide analogs, induces apoptosis of lung epithelial cells. Here we elucidate the link between caspase-3 activation, at the execution phase, and ceramide accumulation, at the commitment phase of apoptosis in A549 human lung adenocarcinoma cells. The induction of ceramide accumulation by various triggers of ceramide generation, such as H(2)O(2), C(6)-ceramide, or UDP-glucose-ceramide glucosyltransferase inhibitor dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, triggered the activation of caspase-3. This ceramide elevation also induced the cleavage of the death substrate poly(ADP-ribose) polymerase and was followed by apoptotic cell death. Ceramide-mediated apoptosis was blocked by a general caspase inhibitor, Boc-d-fluoromethylketone, and by overexpression of the antiapoptotic protein Bcl-2. Notably, overexpression of Bcl-2 reduced the basal cellular levels of ceramide and prevented the induction of ceramide generation by C(6)-ceramide, which implies ceramide generation as a possible target for the antiapoptotic effects of Bcl-2.  相似文献   

13.
Ceramide mediates tumor-induced dendritic cell apoptosis   总被引:11,自引:0,他引:11  
Induction of apoptosis in dendritic cells (DC) is one of the escape mechanisms of tumor cells from the immune surveillance system. This study aimed to clarify the underlying mechanisms of tumor-induced DC apoptosis. The supernatants (SN) of murine tumor cell lines B16 (melanoma), MCA207, and MCA102 (fibrosarcoma) increased C16 and C24 ceramide as determined by electrospray mass spectrometry and induced apoptosis in bone marrow-derived DC. N-oleoylethanolamine or D-L-threo 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits acid ceramidase or glucosylceramide synthase and then increases endogenous ceramide, enhanced DC apoptosis and ceramide levels in the presence of tumor SN. Pretreatment with L-cycloserine, an inhibitor of de novo ceramide synthesis, or phorbol ester, 12-O-tetradecanoylphorbol-13-acetate reduced endogenous ceramide levels and protected DC from tumor-induced apoptosis. However, other DC survival factors, including LPS and TNF-alpha, failed to do so. The protective activity of 12-O-tetradecanoylphorbol-13-acetate is abrogated by pretreatment with phosphoinositide 3-kinase (PI3K) inhibitor, LY294002. Therefore, down-regulation of PI3K is the major facet of tumor-induced DC apoptosis. Tumor SN, N-oleoylethanolamine, or PDMP suppressed Akt, NF-kappaB, and bcl-x(L) in DC, suggesting that the accumulation of ceramide impedes PI3K-mediated survival signals. Taken together, ceramide mediates tumor-induced DC apoptosis by down-regulation of the PI3K pathway.  相似文献   

14.
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) are structural analogues of ceramide; inhibiting UDP-glucose : ceramide glucosyltransferase. After treatment with these synthetic ceramide analogues the expression of glucosphingolipid decreases, while ceramide and sphingomyelin levels increase in the cells of higher eukaryotes. In the unicellular Tetrahymena pyriformis, treatment with PDMP (10-20 microM) and PPMP (40-80 microM) influenced the synthesis of galactose, glucosamine and mannose-containing lipids. On the whole the amount of these lipids was reduced, but new galactose and glucosamine-containing lipids appeared (the exact structures of these lipids were not characterized). Incorporation of (32)P into phosphatidylethanolamine (PE) and phosphatidic acid (PA) was decreased significantly; however the amount of inositol phospholipids were increased. The incorporation of 3H-serine into phosphatidylserine was abolished, but incorporation into sphingomyelin and ceramide was increased.The cytoskeletal elements (silver line system) were disturbed on the basis of scanning electron microscopic pictures. The TRITC-Con A binding and the morphology of the cells were influenced as revealed by confocal laser scanning microscopic analyses. In contrast to higher eukaryotes, in Tetrahymena the shorter fatty acyl chain variant (PDMP) proved to be more effective in each of the examined parameters, while the longer chain variants (PPMP) had milder activity.  相似文献   

15.
We investigated the effects of an inhibitor of sphingolipid biosynthesis, 1-phenyl-2-(decanoyl-amino)-3-morpholino-1-propanol (PDMP), on cells in culture. Two Golgi-associated enzymes were affected by incubation of cells with PDMP. The synthesis of glucosylceramide was inhibited at low concentrations of PDMP (2.5-10 microM), and in the presence of higher concentrations (greater than or equal to 25 microM), synthesis of sphingomyelin was also reduced. Transport of vesicular stomatitis virus G protein through the Golgi complex was progressively retarded by increasing concentrations of PDMP. In the presence of 75 microM PDMP, the half-times of VSV-G protein arrival at the cis, medial, and trans Golgi and the cell surface were increased 1.5-, 2.1-, 2.4-, and 2.8-fold, respectively, compared to control values. Transport of fluorescent sphingolipids, synthesized de novo at the Golgi complex from fluorescent ceramide precursors, to the cell surface was retarded by approximately 20% in the presence of 50 microM PDMP and by approximately 50% in the presence of 100 microM PDMP. Control experiments demonstrated that PDMP had minimal effects on cell morphology and physiology (including microtubule and endoplasmic reticulum structure, mitochondrial function, and endocytosis). Although incubation of cells with relatively high concentrations of PDMP was required to see the effects on protein and sphingolipid transport, use of a fluorescent analogue of PDMP demonstrated that most cell-associated PDMP was sequestered in lysosomes, while the concentration at the Golgi complex, the site of the target synthetic enzymes, was relatively low. Taken together, these results suggest that transport of proteins and sphingolipids through the secretory pathway may be coupled to sphingolipid synthesis.  相似文献   

16.
The M glycoprotein from the avian coronavirus, infectious bronchitis virus (IBV), contains information for localization to the cis-Golgi network in its first transmembrane domain. We hypothesize that localization to the Golgi complex may depend in part on specific interactions between protein transmembrane domains and membrane lipids. Because the site of sphingolipid synthesis overlaps the localization of IBV M, we asked whether perturbation of sphingolipids affected localization of IBV M. Short-term treatment with two inhibitors of sphingolipid synthesis had no effect on localization of IBV M or other Golgi markers. Thus, ongoing synthesis of these lipids was not required for proper localization. Surprisingly, a third inhibitor, d,l-threo-1-phenyl-2-decanoylamino-3-morpholino- 1-propanol (PDMP), shifted the steady-state distribution of IBV M from the Golgi complex to the ER. This effect was rapid and reversible and was also observed for ERGIC-53 but not for Golgi stack proteins. At the concentration of PDMP used, conversion of ceramide into both glucosylceramide and sphingomyelin was inhibited. Pretreatment with upstream inhibitors partially reversed the effects of PDMP, suggesting that ceramide accumulation mediates the PDMP-induced alterations. Indeed, an increase in cellular ceramide was measured in PDMP-treated cells. We propose that IBV M is at least in part localized by retrieval mechanisms. Further, ceramide accumulation reveals this cycle by upsetting the balance of anterograde and retrograde traffic and/ or disrupting retention by altering bilayer dynamics.  相似文献   

17.
Abstract: We reported previously that stereoisomers of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the d - threo and l - threo forms, exerted inhibitory and stimulatory effects on glycosphingolipid (GSL) biosynthesis in B16 melanoma cells, respectively. In the present study, the primary cultured rat neocortical explants were treated with l - or d - threo -PDMP. These isomers exhibited opposite effects on neurite outgrowth: d -PDMP was inhibitory at concentrations ranging from 5 to 20 µ M , whereas l -PDMP was stimulatory over the same concentration range, and the maximal effect was observed at 10–15 µ M . Rat neocortical explants were doubly labeled with [14C]serine and [3H]galactose at 15 µ M l - or d -PDMP. l -PDMP increased the incorporations of both labels into sphinganine, sphingosine, ceramide, sphingomyelin, neutral GSLs, and gangliosides, whereas d -PDMP inhibited the glucosylation of ceramide resulting in a reduction of ganglioside biosynthesis and accumulation of precursors of glucosylceramide, ceramide, and sphingomyelin. To clarify the stimulatory effect of l -PDMP on GSL biosynthesis, serine palmitoyltransferase, sphingosine N -acyltransferase, glucosylceramide synthase, lactosylceramide synthase, GM3 synthase, and GD3 synthase were quantified in cell lysates of explants pretreated with this agent. Serine palmitoyltransferase was fully activated up to 150% of the control. Furthermore, marked increases in the activities of lactosylceramide synthase (200%), GM3 synthase (240%), and GD3 synthase (300%) were observed. These results suggest that the neurotrophic action of l -PDMP may be ascribable to its stimulatory effect on the biosynthesis of GSLs, especially that of gangliosides.  相似文献   

18.
Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells.  相似文献   

19.
D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is an effective inhibitor of the glucosyltransferase that makes glucosylceramide. Virtually all of the hundreds of naturally occurring glycolipids are formed from this primary glycolipid, so the inhibitor acts to lower their concentrations by the process of attrition (hydrolytic catabolism). Trials with mice carrying ascites carcinoma cells showed that PDMP could produce a permanent cure in some of the animals and marked prolongation of life in the others (Inokuchi, J., I. Mason, and N.S. Radin. 1987. Cancer Lett. 38: 23-30). In order to maximize the effect, we studied the metabolism of PDMP by labeling it with [3H] on carbon one, using a labeling method that discriminated against the unwanted erythro-isomer. The active enantiomer of the inhibitor (D-) was isolated by chromatography of the camphanate esters, followed by methanolytic cleavage. Examination of the fate of the labeled drug after a single injection showed that it was very rapidly converted to several polar products that were rapidly excreted. The drug penetrated all of the organs readily and a small portion was oxidized at the C-1 position to yield 3H2O. From these findings it appeared likely that the amine is attacked by a mixed function oxidase based on cytochrome P450. This conclusion was confirmed by showing that the tissue levels of PDMP could be greatly elevated, for a much longer time, when the mice were pretreated with piperonyl butoxide or cimetidine. The amount of conversion to polar metabolites was substantially reduced and tissue levels of PDMP were maintained much longer. Analysis of mice injected with one or both drugs showed that piperonyl butoxide augmented the effects of PDMP on ceramide, glucosylceramide, and dihexosylceramide levels, as well as on the activity of glucosylceramide synthase. It is suggested that piperonyl butoxide be used as an adjuvant for the many useful drugs that are inactivated by the P450 system.  相似文献   

20.
Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth, metabolism, and cell differentiation. Recent studies have revealed that the recruitment of mTORC1 to lysosomes is essential for its activation. The ceramide analogue 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), a well known glycosphingolipid synthesis inhibitor, also affects the structures and functions of various organelles, including lysosomes and endoplasmic reticulum (ER). We investigated whether PDMP regulates the mTORC1 activity through its effects on organellar behavior. PDMP induced the translocation of mTORC1 from late endosomes/lysosomes, leading to the dissociation of mTORC1 from its activator Rheb in MC3T3-E1 cells. Surprisingly, we found mTORC1 translocation to the ER upon PDMP treatment. This effect of PDMP was independent of its action as the inhibitor, since two stereoisomers of PDMP, with and without the inhibitor activity, showed essentially the same effect. We confirmed that PDMP inhibits the mTORC1 activity based on the decrease in the phosphorylation of ribosomal S6 kinase, a downstream target of mTORC1, and the increase in LC3 puncta, reflecting autophagosome formation. Furthermore, PDMP inhibited the mTORC1-dependent osteoblastic cell proliferation and differentiation of MC3T3-E1 cells. Accordingly, the present results reveal a novel mechanism of PDMP, which inhibits the mTORC1 activity by inducing the translocation of mTOR from lysosomes to the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号