首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
What is the role of the cannabinoid system in invertebrates and can it tell us something about the human system? We discuss in this review the possible presence of the cannabinoid system in invertebrates. Endocannabinoid processes, i.e., enzymatic hydrolysis, as well as cannabinoid receptors and endocannabinoids, have been identified in various species of invertebrates. These signal molecules appear to have multiple roles in invertebrates; diminishing sensory input, control of reproduction, feeding behavior, neurotransmission and antiinflammatory actions. We propose that since this system worked so well, it was retained during evolution, and that invertebrates can serve as a model to study endogenous cannabinoid signaling.  相似文献   

3.
4.
5.
6.
1. A phylogenetic study of oxytocin (OXT)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Oncidium verrucosum, Limax marginatus and Meretrix lamarckii of the Mollusca; and Baratha brassica of the Arthropoda. 3. No immunoreactive cells were found in Bipalium sp. of the Platyhelminthes; Pomacea canaliculata, Aplysia kurodai, Bradybaena similaris and Achatina fulica of the Mollusca; and Gnorimosphaeroma rayi, Procambarus clarkii, Hemigrapsus sanguineus, Helice tridens and Gryllus bimaculatus of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 4. These results demonstrate that an OXT-immunoreactive substance is widely present not only in vertebrates but also in invertebrates. 5. OXT seems to have been introduced into these invertebrates at an early stage of their phylogenetic history.  相似文献   

7.
Ecology and production of Salvinia natans Hoffim; in Kashmir   总被引:1,自引:1,他引:0  
Summary Ecological problems arising as a result of rapid growth of S. natans Hoffim in some lakes of Kashmir have been studied. High viability of spores coupled with rapid vegetative propagation seem to be responsible for the spread of the weed. Lake channels protected from wind by a canopy of trees are the most favourable situations in which Salvinia produces a thick mat. Water in these channels is rich in nutrients. Oxygen poor layers of water beneath the mat are detrimental for insect and fish life. Besides, the changing light conditions have profound influence on the submerged vegetation. The most common associates of Salvinia are Hydrocharis dubia and Ceratophyllum demersum.Maximum plant biomass is recorded during August–September with higher efficiency at partially shaded sites. Correlation exists between caloric values and dry matter production and between caloric value and per cent organic carbon.Under laboratory conditions, water of a pH between 4.6–6.0, sodium chloride concentrations higher than 1 % and continuous submergence under water are harmful to the growth of the weed. Partial shady situations seem to be quite beneficial for the growth. Harvesting would probably be the most economical method of control.  相似文献   

8.
9.
The majority of studies in metacommunity ecology have focused on systems other than marine benthic ecosystems, thereby providing an impetus to broaden the focus of metacommunity research to comprise marine systems. These systems are more open than many other systems and may thus exhibit relatively less discrete patterns in community structure across space. Metacommunity structure of soft‐sediment benthic invertebrates was examined using a fine‐grained (285 sites) data set collected during one summer across a large spatial extent (1700 km2). We applied the elements of metacommunity structure (EMS) approach, allowing multiple hypothesis of variation in community structure to be tested. We demonstrated several patterns associated with environmental variation and associated processes that could simultaneously assemble species to occur at the sites. A quasi‐Clementsian pattern was observed frequently, suggesting interdependent ecological relationships among species or similar response to an underlying environmental gradient across sites. A quasi‐nested clumped species loss pattern was also observed, which suggests nested habitat specialization. Species richness declined with depth (from 0.5 to 44.8 m). We argue that sensitive species may survive in shallower water, which are more stable with regard to oxygen conditions and present greater habitat complexity, in contrast to deeper waters, which may experience periodic disturbance due to hypoxia. Future studies should better integrate disturbance in terms of temporal dynamics and dispersal rates in the EMS approach. We highlight that shallow water sites may act as sources of recruitment to deeper water sites that are relatively more prone to periodic disturbances due to hypoxia. However, these shallow sites are not currently monitored and should be better prioritized in future conservation strategies in marine systems.  相似文献   

10.
Dwarfism in males is a common phenomenon in planktonic monogonont rotifers. Considering the small body size of males, some studies suggested that the development time of male rotifers is faster than that of females. However, empirical studies associated with such a speculation are scarce. In this study, we used two common rotifer species, Brachionus calyciflorus and Brachionus plicatilis (each with two geographical populations), to test the hypothesis that the development time of dwarf males is significantly shorter than that of females. Results showed that male eggs (embryos) were deposited much faster than female eggs (embryos) in both Brachionus species. However, the embryonic development time of these small male eggs (embryos) was longer than that of large female eggs (embryos). As a result, males needed significantly longer total development time than females. The total development time of males was 2–3 h longer than that of females in both Brachionus species. Male-producing and female-producing females in the two Brachionus species did not show any difference in development time. Because sexual reproduction begins at high population densities in both species, postponement of development in males will be advantageous by decreasing mating costs in male rotifers.  相似文献   

11.
Methane and hydrogen emission rates and the 13C of CH4 were observed for various termites in Australia, Thailand and Japan. Combined with the already reported emission rates of CH4 in the literature, the phylogenetic trend was examined. Emission rates of the observed termites were categorized into five groups: group I with high CH4 and low H2 emission rates with a CH4/H2 ratio of typically 10/1; group II with high CH4 and high H2 emissions with a CH4/H2 ratio of 4/1–1/2; group III with low emission rates of CH4 and H2; group IV with high H2 and insignificant CH4 emissions; and group V with insignificant emissions for both CH4 and H2. In lower termites, there are both colonies infected and uninfected with methanogens even in the same species, and no specific trend in CH4 and H2 emissions was observed within a genus. Whether protozoa in the hindgut of termites are infected with methanogens or not and the differences in species compositions of protozoa are possibly responsible for the inter-colonial variations. The proportions of infected colonies were possibly small for the family Kalotermitidae (dry wood feeders), and relatively large for families of wet or damp wood feeders. The hydrogen emission rate possibly depends on the locality of methanogens: namely, whether they are intracellular symbionts of protozoa or whether they are attached to the hindgut wall. Emission rates of higher termites were classified into groups according to genera and the diet. Most species of soil or wood/soil interface feeders classified into group I, while the soil feeders Dicuspiditermes in Thailand and Amitermes in Australia were classified into groups with high H2 emission rates. Typical wood-feeding termites and fungus-growing termites were classified into group III. The results indicate that higher termites tend to increase the CH4 emission rate during dietary evolution from wood- to soil-feeding, and two types of the system with different efficiencies of interspecies transfer of H2 have been formed. The 13C of CH4 was discernible with a difference in the decomposition process in the termite–symbiont system among lower termites, fungus-growing termites and other higher termites.  相似文献   

12.
The survival of waterfowl nests is positively correlated with the amount of grassland on the landscape, and population growth rates of some waterfowl species (e.g., mallards [Anas platyrhynchos]) are sensitive to nest survival rates. Thus, the effect of actions that alter grassland vegetation physiognomy, such as grazing, on waterfowl production is of interest to waterfowl habitat managers. Additionally, grasslands contribute other ecological goods (e.g., forage for livestock and wildlife) and services (e.g., photosynthesis, carbon sequestration), which can be influenced by grazing practices. We address key uncertainties about the linkages between grazing, vegetation physiognomy, and the survival and density of duck nests at study-site, field, and nest-site spatial scales. Using data from 2,554 duck nests found in 434 grazed or idled fields (median field size = 48.0 ha) in the Canadian Prairie Pothole Region between 2002 and 2009, we found that vegetation physiognomy affected nest survival at both the field and nest-site scales, such that nest survival increased with nest-site vegetation density and late-season field vegetation density. Nest survival also responded to early-season within-field variation in vegetation height in a quadratic manner, such that survival was greatest in fields with moderate variation in vegetation height. Nest survival was negatively related to the intensity of grazing and to the amount of cropland in the surrounding landscape. Both the abundance of wetlands and the average vegetation height in the field had a positive influence on nest density. Fields idled during the breeding season had greater densities of nests than fields grazed either early or late in the breeding season. Leaving lands idled may be the most effective way to increase both waterfowl nest survival and nest density. When management of upland vegetation is required, we recommend grazing at moderate stocking rates (between 2 and 2.5 animal unit months [AUM]/ha) after the waterfowl breeding season is complete and monitoring vegetative characteristics to ensure they remain suitable to attract nesting waterfowl (e.g., leaving vegetation height >28 cm). Where grazing must be carried out during the breeding season, low to moderate stocking rates should be encouraged as these rates appear to have the least negative impact on both waterfowl nest survival and nest density. These stocking rates also will maintain rangeland in good condition to the long-term benefit of producers. © 2013 The Wildlife Society.  相似文献   

13.
14.
1. A phylogenetic study of arg-vasotocin (AVT)/arg-vasopressin (AVP)-like immunoreactive cells was performed by the PAP method in the central nervous system of invertebrates. 2. The immunoreactivity was detected in the nerve cells of Hydra magnipapillata of the Coelenterata; Neanthes japonica and Pheretima communissima of the Annelida; Pomacea canaliculata, Aplysia kurodai, Oncidium verrucosum, Bradybaena similaris, Achatina fulica, Limax marginatus and Meretrix lamarckii of the Mollusca; Gnorimosphaeroma rayi, Hemigrapsus sanguineus, Gryllus bimaculatus and Baratha brassicae of the Arthropoda; Asterina pectinifera of the Echinodermata; and Halocynthia roretzi of the Protochordata. 3. No immunoreactivity was detected in Bipalium sp. of the Platyhelminthes, or in Procambarus clarkii and Helice tridens of the Arthropoda. 4. From these results, it appears that AVT/AVP is a phylogenetically ancient peptide which is present in a wide variety of invertebrates. 5. The actions of AVT/AVP and its presence in invertebrates are discussed.  相似文献   

15.
16.
1. Secondary production was estimated for Plecoptera, Odonata and Megaloptera (mostly large predators) occurring on the snag habitat of a subtropical blackwater river in the southeastern U.S.A. Coastal Plain for 2 years. Production estimates and gut analyses were used in estimating species‐specific ingestion to construct a quantitative food web of the predator portion of the invertebrate assemblage. Neither basal resources (e.g. detritus) nor predaceous vertebrates (e.g. fishes) were considered in this analysis. A discharge‐specific model of snag‐habitat availability was used to convert values per m2 of snag surface to values per m2 of river bed.
2. These three orders included the major large predators on the snag habitat, as well as two detritivorous stoneflies. The major predators were the hellgrammite (Corydaluscornutus), five perlid stoneflies (Paragnetinakansensis, Perlestaplacida, Neoperlaclymene, Acroneuriaevoluta and Acroneuriaabnormis) and two dragonflies (Neurocorduliamolesta and Boyeriavinosa). The detritivores were Pteronarcysdorsata and Taeniopteryxlita.
3. Total predator production was high, but varied from only 7.1 to 7.4 g dry mass (DM) m?2 y?1 of snag surface (2.4–2.7 g DM m?2 y?1 of river bed) over two years. Corydalus was the largest predator and had the highest production (2.8–3.1 g DM m?2 of snag surface). The most productive stoneflies were Perlesta (0.7–1.0 g DM m?2 of snag surface) and Paragnetina (1.0–1.3 g DM m?2 of snag surface). The most productive dragonfly was Neurocordulia (0.7–1.9 g DM m?2 of snag surface). Production of the non‐predaceous stoneflies was 1.0–2.3 g DM m?2 of snag surface. Production values per m2 of river bed were 2–3.5 times lower than the values per m2 snag surface.
4. Measurement of ingestion fluxes within the predator portion of the food web showed that predaceous invertebrates were primarily supported by chironomid and mayfly prey. However, the greatest consumption of chironomids and mayflies was by omnivorous hydropsychid caddisflies, which had a considerably higher production than the larger predators. There was a hierarchy of feeding with Corydalus as top predator consuming all other groups, followed in order by dragonflies, stoneflies and hydropsychids. Although the feeding hierarchy suggested the presence of four predatory trophic levels within the invertebrate assemblage, calculations of trophic position indicated there were less than two. With primary consumers (e.g. midges) having a trophic position of 2, Corydalus had a trophic position of only 3.5.
5. A relatively high fraction of invertebrate production was consumed by predaceous invertebrates, ranging from 9 to >100% for various primary consumer groups, with total consumption representing 52% of total production. Because these estimates do not include vertebrate consumption or emergence, it means that a high fraction of larval mortality is due to predation.  相似文献   

17.
This paper first explores 3 philosophical bases for attitudes to invertebrates, Contractarian/Kantian, Utilitarian, and Rights-based, and what they lead us to conclude about how we use and care for these animals. We next discuss the problems of evaluating pain and suffering in invertebrates, pointing out that physiological responses to stress are widely similar across the animal kingdom and that most animals show behavioral responses to potentially painful stimuli. Since cephalopods are often used as a test group for consideration of pain, distress and proper conditions for captivity and handling, we evaluate their behavioral and cognitive capacities. Given these capacities, we then discuss practical issues: minimization of their pain and suffering during harvesting for food; ensuring that captive cephalopods are properly cared for, stimulated and allowed to live as full a life as possible; and, lastly, working for their conservation.  相似文献   

18.
Tachykinin-related peptides in invertebrates: a review   总被引:9,自引:0,他引:9  
Nässel DR 《Peptides》1999,20(1):141-158
Peptides with sequence similarities to members of the tachykinin family have been identified in a number of invertebrates belonging to the mollusca, echiuridea, insecta and crustacea. These peptides have been designated tachykinin-related peptides (TRPs) and are characterized by the preserved C-terminal pentapeptide FX1GX2Ramide (X1 and X2 are variable residues). All invertebrate TRPs are myostimulatory on insect hindgut muscle, but also have a variety of additional actions: they can induce contractions in cockroach foregut and oviduct and in moth heart muscle, trigger a motor rhythm in the crab stomatogastric ganglion, depolarize or hyperpolarize identified interneurons of locust and the snail Helix and induce release of adipokinetic hormone from the locust corpora cardiaca. Two putative TRP receptors have been cloned from Drosophila; both are G-protein coupled and expressed in the nervous system. The invertebrate TRPs are distributed in interneurons of the CNS of Limulus, crustaceans and insects. In the latter two groups TRPs are also present in the stomatogastric nervous system and in insects endocrine cells of the midgut display TRP-immunoreactivity. In arthropods the distribution of TRPs in neuronal processes of the brain displays similar patterns. Also in coelenterates, flatworms and molluscs TRPs have been demonstrated in neurons. The activity of different TRPs has been explored in several assays and it appears that an amidated C-terminal hexapeptide (or longer) is required for bioactivity. In many invertebrate assays the first generation substance P antagonist spantide I is a potent antagonist of invertebrate TRPs and substance P. Locustatachykinins stimulate adenylate cyclase in locust interneurons and glandular cells of the corpora cardiaca, but in other tissues the putative second messenger systems have not yet been identified. The heterologously expressed Drosophila TRP receptors coupled to the phospholipase C pathway and could induce elevations of inositol triphosphate. The structures, distributions and actions of TRPs in various invertebrates are compared and it is concluded that the TRPs are multifunctional peptides with targets both in the central and peripheral nervous system and other tissues, similar to vertebrate tachykinins. Invertebrate TRPs may also be involved in developmental processes.  相似文献   

19.
Matrotrophy, the continuous extra‐vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy—placentotrophy—is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting. In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive. Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present. Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy, embryophagy and histophagy are rarer, plausibly evolving through heterochronous development of the embryonic mouthparts and digestive system. During gestation, matrotrophic modes can shift, intergrade, and be performed simultaneously. Invertebrate matrotrophic adaptations are less complex structurally than in chordates, but they are more diverse, being formed either by a parent, embryo, or both. In a broad and still preliminary sense, there are indications of trends or grades of evolutionarily increasing complexity of nutritive structures: formation of (i) local zones of enhanced nutritional transport (placental analogues), including specialized parent–offspring cell complexes and various appendages increasing the entire secreting and absorbing surfaces as well as the contact surface between embryo and parent, (ii) compartmentalization of the common incubatory space into more compact and ‘isolated’ chambers with presumably more effective nutritional relationships, and (iii) internal secretory (‘milk’) glands. Some placental analogues in onychophorans and arthropods mimic the simplest placental variants in vertebrates, comprising striking examples of convergent evolution acting at all levels—positional, structural and physiological.  相似文献   

20.
The salvinia-herbivore system has been investigated in more detail than most, because of its relative simplicity due to the absence o f sexual and dormant stages in the plant's life cycle, the apparent genetic uniformity of the plant, the absence of water stress, the uniformity of the water surface habitat and the absence of herbivores outside the plant's native range. This review describes how biological control of salvinia was achieved and discusses ecological principles illustrated by salvinia and its herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号