首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The use of synthetic palmitoyl carnitine, naturally occurring in cellular membranes, was investigated for the lysis of Alcaligenes eutrophus and Alcaligenes latus. The optimal concentration of the lysin was 1.0 mM and the lysis was almost completed in 60 minutes. Alcaligenes latus was more susceptible to the lytic activity of palmitoyl carnitine than Alcaligenes eutrophus. Palmitoyl carnitine was found to be a more effective lysin than lysozyme.  相似文献   

2.
Summary The use of Cytophaga lysing enzymes was investigated for the liberation of poly--hydroxybutyrate (PHB) granules from the Gram-negative bacterium Alcaligenes eutrophus. Complete cell lysis was approached within a 60 minute period. Contrary to previous findings for the lysis of Gram-negative bacteria, prior removal of the outer membrane was not essential for enzymic lysis. The destabilisation of the outer membrane by the removal of divalent cations resulted in no significant improvement in the disruption process.  相似文献   

3.
The aerobic facultative chemoautotroph Alcaligenes eutrophus was found to possess a novel gene, designated aut, required for both lithoautotrophic (hydrogen plus carbon dioxide) and organoautotrophic (formate) growth (Aut+ phenotype). Insertional mutagenesis by transposon Tn5-Mob localized the gene on a chromosomal 13-kbp EcoRI fragment. Physiological characterization of various Aut- mutants revealed pleiotropic effects caused by the transposon insertion. Heterotrophic growth of the mutants on substrates catabolized via the glycolytic pathway was slower than that of the parent strains, and the colony morphology of the mutants was altered when grown on nutrient agar. The heterotrophic derepression of the cbb operons encoding Calvin cycle enzymes was abolished, although their expression was still inducible in the presence of formate. Apparently, the mutation did not affect the cbb genes directly but impaired the autotrophic growth in a more general manner. The conjugally transferred wild-type EcoRI fragment allowed phenotypic in trans complementation of the mutants. Further subcloning and sequencing identified a single open reading frame (aut) of 495 bp that was sufficient for complementation. The monocistronic aut gene was constitutively transcribed into a 0.65-kb mRNA. However, its expression appeared to be low. Heterologous expression of aut was achieved in Escherichia coli, resulting in overproduction of an 18-kDa protein. Database searches yielded weak partial sequence similarities of the deduced Aut protein sequence to some cytidylyltransferases, but no indication for the exact function of the aut gene was obtained. Hybridizing DNA sequences that might be similar to the aut gene were detected by Southern hybridization in the genome of two other autotrophic bacteria.  相似文献   

4.
Nickel is a constituent of soluble and particulate hydrogenase of Alcaligenes eutrophus. Incorporation of 63Ni2+ revealed that almost the total nickel taken up by the cells was bound to the protein. Chromatography of a crude extract on diethylaminoethyl cellulose demonstrated an association of 63Ni2+ with soluble and particulate hydrogenase, supported by further analysis like polyacrylamide gel electrophoresis. Unspecific binding of 63Ni2+ to the protein was excluded by comparison with a mutant extract free of hydrogenase protein. X-ray fluorescence analysis of the homogeneous soluble hydrogenase indicated the presence of 2 mol of nickel per mol of enzyme, whereas the amount of nickel determined by incorporation of 63Ni2+ was calculated to be approximately 1 mol/mol of enzyme. Cells grown under nickel limitation contained catalytically inactive, but serologically active, soluble and particulate hydrogenase. The immunochemical reactions were only partially identical with the enzyme from nickel-cultivated cells indicating a structural modification of the proteins in the absence of nickel. It is concluded that nickel is essential for the catalytic activity of hydrogenase and not involved as a regulatory component in the synthesis of this enzyme.  相似文献   

5.
The soluble hydrogenase (hydrogen:NAD+ oxidoreductase (EC 1.12.1.2) from Alcaligenes eutrophus has been purified to homogeneity by an improved procedure, which includes preparative electrophoresis as final step. The specific activity of 57 mumol H2 oxidized/min per mg protein was achieved and the yield of pure enzyme from 200 g cells (wet weight) was about 16 mg/purification. After removal of non-functional iron, analysis of iron and acid-labile sulphur yielded average values of 11.5 and 12.9 atoms/molecule of enzyme, respectively. p-Chloromercuribenzoate was a strong inhibitor of hydrogenase and apparently competed with NAD not with H2. Chelating agents, CO and O2 failed to inhibit enzyme activity. The oxidized hydrogenase showed an EPR spectrum with a small signal at g = 2.02. On reduction the appearance of a high temperature (50--77 K) signal at g = 2.04, 1.95 and a more complex low temperature (less than 30 K) spectrum at g = 2.04, 2.0, 1.95, 1.93, 1.86 was observed. The pronounced temperature dependence and characteristic lineshape of the signals obtained with hydrogenase in 80--85% dimethylsulphoxide demonstrated that iron-sulphur centres of both the [2Fe-2S] and [4Fe-4S] types are present in the enzyme. Quantitation of the EPR signals indicated the existence of two identical centres each of the [4Fe-4S] and of the [2Fe-2S] type. The midpoint redox potentials of the [4Fe-4S] and the [2Fe-2S] centres were determined to be -445 mV and -325 mV, respectively. Spin coupling between two centres, indicated by the split feature of the low temperature spectrum of the native hydrogenase around g = 1.95, 1.93, has been established by power saturation studies. On reduction of the [Fe-4S] centres, the electron spin relaxation rate of the [2Fe-2S] centres was considerably increased. Treatment of hydrogenase with CO caused no change in EPR spectra.  相似文献   

6.
Summary Alcaligenes eutrophus was successfully recovered from high cell density broths by pre-treatment with polyaluminium hydroxide chloride silicate as a coagulant at 36–90 mg Al/l. The optimum pH range for cell coagulation was 10–12. Subsequent centrifugation (45×g) and filtration (pore size 0.5 mm) gave a cell recovery of higher than 90%. The energy demand for cell recovery with the coagulant was only 3–11% of that without it.  相似文献   

7.
An enzyme specifically induced during 4-methylmuconolactone metabolism by Alcaligenes eutrophus JMP 134 and that exhibited muconolactone isomerizing activity was purified to homogeneity. The enzyme, involved in the isomerization of 3-methylmuconolactone had a high degree of sequence similarity with muconolactone isomerase of Alcaligenes eutrophus JMP 134 and other previously described muconolactone isomerases of the 3-oxoadipate pathway. Kinetic analysis showed that the enzyme has a substrate spectrum and a reaction mechanism similar to those of the muconolactone isomerase, but that it has distinct kinetic properties. Received: 5 November 1996 / Accepted: 13 January 1997  相似文献   

8.
9.
The two highly homologous cbb operons of Alcaligenes eutrophus H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated cbbT and cbbZ, at equivalent positions within the operons. Comparisons with known sequences suggested cbbT to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for cbbZ. Although both regions exhibited very high nucleotide identities, 93% (cbbZ) and 96% (cbbT), only the chromosomally encoded genes were heterologously expressed to high levels in Escherichia coli. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in E. coli clones expressing cbbT, confirming the identity of the gene. Strains of E. coli harboring the chromosomal cbbZ gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type E. coli. Derepression of the cbb operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in A. eutrophus, although the pHG1-encoded cbbZ gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism.  相似文献   

10.
HoxN, an integral membrane protein with seven transmembrane helices and a molecular mass of 33.1 kDa, is involved in high-affinity nickel transport in Alcaligenes eutrophus H16. From genetic analyses, it has been concluded that HoxN is a single-component ion carrier. To investigate this assumption, hoxN was introduced into Escherichia coli. The recombinant strain showed significantly enhanced nickel uptake in a short-interval assay. Likewise, growth in the presence of 63NiCl2 yielded a more than 15-fold-increased cellular nickel content. The HoxN-based nickel transport activity could also be demonstrated in a physiological assay: an E. coli strain coexpressing hoxN and the urease operon of Klebsiella aerogenes exhibited urease activity 10-fold greater than that in the strain lacking a functional hoxN. These results strongly suggest that HoxN is sufficient to operate as a nickel permease. Multiple sequence alignment of HoxN and four other bacterial membrane proteins implicated in nickel metabolism revealed two conserved signatures which may play a role in the nickel translocation process.  相似文献   

11.
12.
Abstract The membrane-bound hydrogenase was localized in cells of Alcaligenes eutrophus by electron microscopic immunocytochemistry. Post-embedding labeling performed on ultrathin sections revealed that the enzyme was located predominantly (80%) at the cell periphery in autotrophically and heterotrophically grown bacteria harvested from the exponential phase of growth. In the stationary growth phase, however, only 50% of the enzyme was found at the cell periphery; the remaining 50% was distributed over the cytoplasm. The relative amount of electron microscopic label per cell as seen by application of the protein A—gold technique was higher in cells grown autotrophically as compared to cells grown heterotrophically on fructose. Derepression of the enzyme was followed electron microscopically in a substrate-shift experiment (growth on fructose, followed by a shift to glycerol). Major amounts of the enzyme appeared to undergo a reattachment to the cytoplasmic membrane under these conditions, starting with a reduced location of the enzyme in the cytoplasm and an accumulation in cell areas close to the cytoplasmic membrane. These findings indicate that the 'membrane-bound' hydrogenase (i.e., that material enriched as membrane-bound enzyme according to the appropriate activity test) is not, in fact, membrane bound or membrane integrated but membrane associated. It may or may not interact with the cytoplasmic face of the cytoplasmic membrane, depending on the growth phase and conditions.  相似文献   

13.
During batch growth of Alcaligenes eutrophus on benzoate-plus-succinate mixtures, substrates were simultaneously metabolized, leading to a higher specific growth rate (mu = 0.56 h-1) than when a single substrate was used (mu = 0.51 h-1 for benzoate alone and 0.44 h-1 for succinate alone), without adversely affecting the growth yield (0.57 Cmol/Cmol). Flux distribution analysis revealed that succinate dehydrogenase most probably controls the rate of total succinate consumption (the maximum flux being 9.7 mmol.g-1.h-1). It is postulated that the relative consumption rate of each substrate is in part related to modified levels of gene expression but to a large extent is dependent upon the presence of succinate, end product of the beta-ketoadipate pathway. Indeed, the in vitro beta-ketoadipate-succinyl coenzyme A transferase activity was seen to be inhibited by succinate, a coproduct of the reaction.  相似文献   

14.
With 0.5% substrate present in mineral medium, cells of Alcaligenes eutrophus H 16 were able to grow heterotrophically at the expense of guanine, hypoxanthine and xanthine, but not of adenine as sole sources of carbon and nitrogen. An increase in cell counts, however, was observed at lower adenine concentrations (0.1%). Similarly, adenine was only respired if present at low concentrations. Higher amounts of adenine were inhibitory to the utilization of adenine, guanine, hypoxanthine, xanthine, allantoin and glyoxylate, but not to that of fructose or glycerate. The adenine-dependent inhibition of adenine utilization was not overcome by the addition of thiamine, uridine or cytidine. The enzyme glyoxylate carboligase, usually formed in presence of metabolisable purines and of allantoin, was synthesized only at low adenine concentrations. Higher amounts were inhibitory even with allantoin present as additional substrate. According to these resutls, the utilization of purine derivatives and of allantoin as sources of carbon and energy is repressed by adenine in cells of A. eutrophus H 16.  相似文献   

15.
The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.  相似文献   

16.
Chemoautotrophic growth of Alcaligenes eutrophus 17707 is inhibited by 20% oxygen in the gas phase. Lowering the oxygen concentration to 4% results in chloramphenicol-sensitive derepression of soluble and membrane-bound hydrogenase activity (and of soluble hydrogenase antigen), showing that oxygen inhibition is due at least in part to repression of hydrogenase synthesis. Mutations resulting in derepression of hydrogenase activity (and antigen) under 25% oxygen (Ose-) mobilized with a self-transmissable plasmid which is already known to carry genes necessary for hydrogenase expression. Plasmid-borne mutations resulting in loss of soluble hydrogenase activity have no effect on the Ose phenotype, but chromosomal mutations resulting in reduction or loss of both hydrogenase activities cannot be made Ose-. The Ose- mutation does not alter the thermostability of either hydrogenase, and soluble hydrogenase in the mutant reacts with complete identity with that of the wild type, indicating that the Ose- phenotype does not result from structural alterations in either enzyme. Ose- mutants are also relieved of normal hydrogenase repression by organic substrates, which aggravates hydrogenase-mediated inhibition of heterotrophic growth by hydrogen. Regulation of hydrogenase in Ose- strains of A. eutrophus 17707 is nearly identical to that of wild-type A. eutrophus strains H1 and H16.  相似文献   

17.
A soluble flavohemoprotein (Fhp) was isolated to near homogeneity from heterotrophically grown cells of Alcaligenes eutrophus H16. Purified protein was used to raise polyclonal antibodies in rabbits. The anti-Fhp was employed to determine the content of Fhp in soluble extracts of wildtype and mutant strains of Alcaligenes. This analysis revealed that the formation of Fhp was strictly dependent on the presence of the individual megaplasmid, indigenous to A. eutrophus wild-type strains H16, H20 and N9A. Alcaligenes hydrogenophilus M50 did not contain Fhp; however, transfer of the A. eutrophus H16 specific plasmid pHG1 into this host, conferred Fhp-forming capacity. The fhp gene was isolated from a cosmid library of pHG1 DNA. A subcloned HindIII fragment of 3.27 kilobase pairs (kb) restored Fhp synthesis in plasmid-free mutants of A. eutrophus. Immunological studies showed that Fhp could also be expressed in the cloning organism Escherichia coli.  相似文献   

18.
The hydrogen-evolving reaction of the purified soluble NAD-linked hydrogenase of Alcaligenes eutrophus was used to determine kinetic parameters of the enzyme. The H2-evolving activity with methyl viologen as electron mediator was 20-fold as compared to that with NADH. In the assay with dithionite-reduced methyl viologen (Km 0.7 mM) the hydrogenase was most active at a redox potential of –560 mV and exhibited a pH optimum of 7.0. The Km for protons, the second substrate for H2 evolution, was 6.2 nM. With electrochemically reduced methyl viologen the pH optimum was shifted to pH 6.0. Double-reciprocal plots of reaction rates versus proton concentrations intercepted at the ordinate for different methyl viologen concentrations. At different pH values such an intercept was also observed with the dye as the varied substrate. The kinetic data are diagnostic for an ordered bisubstrate mechanism where both substrates are bound before the product H2 is released. Hydrogenase coupled to thylakoid membranes resulted in a constant H2 evolution rate over 6 h. The system appeared to be limited by the capacity of the thylakoid membranes.  相似文献   

19.
Drug-resistance element Tn5 coding for kanamycin resistance was used for mutagenesis of Alcaligenes eutrophus strain H16. The vehicle for introducing Tn5 into A. eutrophus was plasmid pJB4JI harboured by Escherichia coli. Kanamycin-resistant transconjugants occurred at a frequency of approximately 5×10-8. One third of the transconjugants exhibited other plasmid-coded resistances such as gentamycin and spectinomycin. However, the latter markers were not stably maintained in the new host. Among the kanamycin-resistant transconjugants three classes of mutants were found: (i) Auxotrophic mutants occurred at a frequency of 0.8% and showed requirements for histidine, methionine, aspartate orisoleucine. Out of eleven auxotrophic mutants examined eight reverted to prototrophy. However, none of the revertants was kanamycin-sensitive. (ii) Mutants unable to grow with fructose as the carbon source occurred at a frequency of almost 10%. (iii) Mutants which had lost the ability to grow autotrophically with hydrogen and carbon dioxide were found at a frequency of 1%. Further analyses revealed that this class of mutants was either defective in carbon dioxide fixation or impaired in hydrogen metabolism.  相似文献   

20.
Alcaligenes eutrophus H16 harbors seven hyp genes (hypA, B, F, C, D, E, and X) as part of the hydrogenase gene cluster on megaplasmid pHG1. Here we demonstrate that three of the hyp genes (hypA, B, and F) are duplicated in A. eutrophus, which explains the lack of a phenotypic change in single-site mutants impaired in one of the two copies. Mutants with lesions in both copies showed clear alterations in hydrogenase activities. Deletions in hypF1 and hypF2 completely abolished activities of the soluble hydrogenase and of the membrane-bound hydrogenase, mutations in hypA1 and hypA2 totally blocked the membrane-bound hydrogenase activity, while residual soluble hydrogenase activity accounted for the extremely slow growth of the strain on H2. Both hydrogenase activities of mutants defective in hypB1 and hypB2 were partially restored by elevating the concentration of nickel chloride in the medium. Reduction of hydrogenase activities in the double mutants correlated with varying degrees of maturation deficiency based upon the amount of unprocessed nickel-free hydrogenase precursor. Despite a high identity between the two copies of hyp gene products, substantial structural differences were identified between the two copies of hypF genes. HypF1, although functionally active, is a truncated version of HypF2, whose structure resembles HypF proteins of other organisms. Interestingly, the N-terminus of HypF2, which is missing in the HypF1 counterpart, contains a putative acylphosphatase domain in addition to a potential metal binding site. Received: 15 June 1998 / Accepted: 5 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号