首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Every species occupies a limited geographic area, but it remains unclear why traits that limit distribution do not evolve to allow range expansion. Hypotheses for the evolutionary stability of geographic ranges assume that species are maladapted at the range boundary and unfit beyond the current range, but this assumption has rarely been tested. To examine how fitness varies across species' ranges, we reciprocally transplanted two species of monkeyflowers, Mimulus cardinalis and M. lewisii, within and beyond their present elevation ranges. We used individuals of known parentage from populations collected across the elevation ranges of both species to examine whether populations are adapted to position within the range. For both species we found the greatest average fitness at elevations central within the range, reduced fitness at the range margin, and zero or near-zero fitness when transplanted beyond their present elevation range limits. However, the underlying causes of fitness variation differed between the species. At high elevations beyond its range, M. cardinalis displayed reduced growth and fecundity, whereas at low elevations M. lewisii experienced high mortality. Weak differences in performance were observed among populations within each species and these were not related to elevation of origin. Low fitness of both species at their range margin and weak differentiation among populations within each species suggest that adaptation to the environment at and beyond the range margin is hindered, illustrating that range margins provide an interesting system in which to study limits to adaptation.  相似文献   

2.
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

3.
With changing climate, many species are projected to move poleward or to higher elevations to track suitable climates. The prediction that species will move poleward assumes that geographically marginal populations are at the edge of the species' climatic range. We studied Pinus coulteri from the center to the northern (poleward) edge of its range, and examined three scenarios regarding the relationship between the geographic and climatic margins of a species' range. We used herbarium and iNaturalist.org records to identify P. coulteri sites, generated a species distribution model based on temperature, precipitation, climatic water deficit, and actual evapotranspiration, and projected suitability under future climate scenarios. In fourteen populations from the central to northern portions of the range, we conducted field studies and recorded elevation, slope and aspect (to estimate solar insolation) to examine relationships between local and regional distributions. We found that northern populations of P. coulteri do not occupy the cold or wet edge of the species' climatic range; mid‐latitude, high elevation populations occupy the cold margin. Aspect and insolation of P. coulteri populations changed significantly across latitudes and elevations. Unexpectedly, northern, low‐elevation stands occupy north‐facing aspects and receive low insolation, while central, high‐elevation stands grow on more south‐facing aspects that receive higher insolation. Modeled future climate suitability is projected to be highest in the central, high elevation portion of the species range, and in low‐lying coastal regions under some scenarios, with declining suitability in northern areas under most future scenarios. For P. coulteri, the lack of high elevation habitat combined with a major dispersal barrier may limit northward movement in response to a warming climate. Our analyses demonstrate the importance of distinguishing geographically vs. climatically marginal populations, and the importance of quantitative analysis of the realized climate space to understand species range limits.  相似文献   

4.
Most transplant experiments across species geographic range boundaries indicate that adaptation to stressful environments outside the range is often constrained. However, the mechanisms of these constraints remain poorly understood. We used extended generation crosses from diverged high and low elevation populations. In experiments across low elevation range boundaries, there was selection on the parental lines for abiotic stress‐tolerance and resistance to herbivores. However, in support of a defense‐tolerance trade‐off, extended generation crosses showed nonindependent segregation of these traits in the laboratory across a drought‐stress gradient and in the field across the low elevation range boundary. Genotypic variation in a marker from a region of the genome containing a candidate gene (MYC2) was associated with change in the genetic trade‐off. Thus, using crosses and forward genetics, we found experimental genetic and molecular evidence for a pleiotropic trade‐off that could constrain the evolution of range expansion.  相似文献   

5.
According to theory, edge populations may be poised to expand species’ ranges if they are locally adapted to extreme conditions, or ill‐suited to colonise beyond‐range habitat if their offspring are genetically and competitively inferior. We tested these contrasting predictions by transplanting low‐, mid‐, and high‐elevation (edge) populations of an annual plant throughout and above its elevational distribution. Seed from poor‐quality edge habitat (one of two transects) had inferior emergence, but edge seeds also had adaptive phenology (both transects). High‐elevation plants flowered earlier, required less heat accumulation to mature seed, and so achieved higher lifetime fitness at and above the range edge. Experimental warming improved fitness above the range, but eliminated the advantage of local cold‐edge populations, supporting recent models in which cold‐adapted edge populations do not facilitate warming‐induced range shifts. The highest above‐range fitness was achieved by a ‘super edge phenotype’ from a neighbouring mountain, suggesting key adaptations exist regionally even if absent from local edge populations.  相似文献   

6.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

7.
It is generally accepted that the spatial distribution of neutral genetic diversity within a species’ native range mostly depends on effective population size, demographic history, and geographic position. However, it is unclear how genetic diversity at adaptive loci correlates with geographic peripherality or with habitat suitability within the ecological niche. Using exome‐wide genomic data and distribution maps of the Alpine range, we first tested whether geographic peripherality correlates with four measures of population genetic diversity at > 17,000 SNP loci in 24 Alpine populations (480 individuals) of Swiss stone pine (Pinus cembra) from Switzerland. To distinguish between neutral and adaptive SNP sets, we used four approaches (two gene diversity estimates, FST outlier test, and environmental association analysis) that search for signatures of selection. Second, we established ecological niche models for P. cembra in the study range and investigated how habitat suitability correlates with genetic diversity at neutral and adaptive loci. All estimates of neutral genetic diversity decreased with geographic peripherality, but were uncorrelated with habitat suitability. However, heterozygosity (He) at adaptive loci based on Tajima's D declined significantly with increasingly suitable conditions. No other diversity estimates at adaptive loci were correlated with habitat suitability. Our findings suggest that populations at the edge of a species' geographic distribution harbour limited neutral genetic diversity due to demographic properties. Moreover, we argue that populations from suitable habitats went through strong selection processes, are thus well adapted to local conditions, and therefore exhibit reduced genetic diversity at adaptive loci compared to populations at niche margins.  相似文献   

8.
High‐dispersal rates in heterogeneous environments and historical rapid range expansion can hamper local adaptation; however, we often see clinal variation in high‐dispersal tree species. To understand the mechanisms of the species’ distribution, we investigated local adaptation and adaptive plasticity in a range‐wide context in Sitka spruce, a wind‐pollinated tree species that has recently expanded its range after glaciations. Phenotypic traits were observed using growth chamber experiments that mimicked temperature and photoperiodic regimes from the limits of the species realized niche. Bud phenology exhibited parallel reaction norms among populations; however, putatively adaptive plasticity and strong divergent selection were seen in bud burst and bud set timing respectively. Natural selection appears to have favoured genotypes that maximize growth rate during available frost‐free periods in each environment. We conclude that Sitka spruce has developed local adaptation and adaptive plasticity throughout its range in response to current climatic conditions despite generally high pollen flow and recent range expansion.  相似文献   

9.
Genes underlying repeated adaptive evolution in natural populations are still largely unknown. Stickleback fish (Gasterosteus aculeatus) have undergone a recent dramatic evolutionary radiation, generating numerous examples of marine-freshwater species pairs and a small number of benthic-limnetic species pairs found within single lakes [1]. We have developed a new genome-wide SNP genotyping array to study patterns of genetic variation in sticklebacks over a wide geographic range, and to scan the genome for regions that contribute to repeated evolution of marine-freshwater or benthic-limnetic species pairs. Surveying 34 global populations with 1,159 informative markers revealed substantial genetic variation, with predominant patterns reflecting demographic history and geographic structure. After correcting for geographic structure and filtering for neutral markers, we detected large repeated shifts in allele frequency at some loci, identifying both known and novel loci likely contributing to marine-freshwater and benthic-limnetic divergence. Several novel loci fall close to genes implicated in epithelial barrier or immune functions, which have likely changed as sticklebacks adapt to contrasting environments. Specific alleles differentiating sympatric benthic-limnetic species pairs are shared in nearby solitary populations, suggesting an allopatric origin for adaptive variants and selection pressures unrelated to sympatry in the initial formation of these classic vertebrate species pairs.  相似文献   

10.
Factors shaping the geographic range of a species can be identified when phylogeographic patterns are combined with data on contemporary and historical geographic distribution, range‐wide abundance, habitat/food availability, and through comparisons with codistributed taxa. Here, we evaluate range dynamism and phylogeography of the rocky intertidal gastropod Mexacanthina lugubris lugubris across its geographic range – the Pacific coast of the Baja peninsula and southern California. We sequenced mitochondrial DNA (CO1) from ten populations and compliment these data with museum records, habitat availability and range‐wide field surveys of the distribution and abundance of M. l. lugubris and its primary prey (the barnacle Chthamalus fissus). The geographic range of M. l. lugubris can be characterized by three different events in its history: an old sundering in the mid‐peninsular region of Baja (~ 417,000 years ago) and more recent northern range expansion and southern range contraction. The mid‐peninsular break is shared with many terrestrial and marine species, although M. l. lugubris represents the first mollusc to show it. This common break is often attributed to a hypothesized ancient seaway bisecting the peninsula, but for M. l. lugubris it may result from large habitat gaps in the southern clade. Northern clade populations, particularly near the historical northern limit (prior to the 1970s), have high local abundances and reside in a region with plentiful food and habitat – which makes its northern range conducive to expansion. The observed southern range contraction may result from the opposite scenario, with little food or habitat nearby. Our study highlights the importance of taking an integrative approach to understanding the processes that shape the geographic range of a species via combining range‐wide phylogeography data with temporal geographic distributions and spatial patterns of habitat/food availability.  相似文献   

11.
Evolutionary biologists increasingly recognize that evolution can be constrained by trade-offs, yet our understanding of how and when such constraints are manifested and whether they restrict adaptive divergence in populations remains limited. Here, we show that spatial heterogeneity in moisture maintains a polymorphism for pungency (heat) among natural populations of wild chilies (Capsicum chacoense) because traits influencing water-use efficiency are functionally integrated with traits controlling pungency (the production of capsaicinoids). Pungent and non-pungent chilies occur along a cline in moisture that spans their native range in Bolivia, and the proportion of pungent plants in populations increases with greater moisture availability. In high moisture environments, pungency is beneficial because capsaicinoids protect the fruit from pathogenic fungi, and is not costly because pungent and non-pungent chilies grown in well-watered conditions produce equal numbers of seeds. In low moisture environments, pungency is less beneficial as the risk of fungal infection is lower, and carries a significant cost because, under drought stress, seed production in pungent chilies is reduced by 50 per cent relative to non-pungent plants grown in identical conditions. This large difference in seed production under water-stressed (WS) conditions explains the existence of populations dominated by non-pungent plants, and appears to result from a genetic correlation between pungency and stomatal density: non-pungent plants, segregating from intra-population crosses, exhibit significantly lower stomatal density (p = 0.003), thereby reducing gas exchange under WS conditions. These results demonstrate the importance of trait integration in constraining adaptive divergence among populations.  相似文献   

12.
Life-history theory allows predictions of how changes in environmental selection pressures along a species' geographic distribution result in discrete shifts in life-history traits. We tested for spatial patterns of 24 populations of brown bears Ursus arctos across North America that grouped according to the following environmental and population parameters: evapotranspiration as a correlate of primary productivity of vegetation, coefficient of variation of monthly evapotranspiration values as a measure of seasonality. population density, and adult female weight. Cluster analysis grouped brown bear populations into two regions: Pacific-coastal populations characterized by high population density and large females that lived in areas of high primary productivity and low seasonality. and inland and barren-ground populations characterized by relatively low density and small bears that lived in areas of low productivity and high seasonality. For each region, we tested whether life-history traits (age at maturity and interbirth interval) related to primary productivity or seasonality. High altitude (interior: > 1000 m) and high latitude (barren-ground; >65°N) populations respond to extremes in seasonality with risk-spreading adaptations. For example, age at maturity and interbirth interval increased with greater seasonality. In contrast, Pacific-coastal populations living on the western edge of brown bear geographic range respond to intraspecific competition at high densities by maximizing offspring competitive ability. For example, age at maturity increased with greater primary productivity and high population density. In each region, the female parent decided on the life-history trade-offs required to reduce the risks of offspring mortality depending on the environmental pattern.  相似文献   

13.
Specialization can allow plants to perform well in their home environments at the expense of poor performance in other habitats. A great difference in performance across habitats is observed as high phenotypic plasticity in performance traits and a by‐product of selection. However, phenotypic plasticity (particularly adaptive plasticity) can be an active response to the selection by allowing the maintenance of performance. Therefore, specialization and adaptive plasticity delineate two opposing strategies. The specialization hypothesis presents a non‐adaptive interpretation of plasticity and predicts that phenotypic plasticity of performance traits is greater in specialization to good habitats, whereas bad habitat specialists express low plasticity in performance traits. We tested the specialization hypothesis using plants adapted to extremely stressful mine‐site habitats (sites with highly acidic soil and heavy metal contamination). Seeds of five herbaceous species were collected from high stress (mine site) and low stress habitats. We established a glasshouse experiment where seedlings from high and low stress habitats were grown under near neutral pH and acid soil treatments. We compared performance trait plasticity (e.g. biomass) from high stress and low stress populations and found that there was no significant difference in performance traits between high and low stress populations across treatments. The overall result did not support the specialization hypothesis. Moreover, our results suggest that the species invaded the mine sites are either extreme generalists or the surrounding populations retain some stress tolerant genotypes that are capable of invading the mine sites.  相似文献   

14.
Local adaptation at range edges influences species’ distributions and how they respond to environmental change. However, the factors that affect adaptation, including gene flow and local selection pressures, are likely to vary across different types of range edge. We performed a reciprocal transplant experiment to investigate local adaptation in populations of Plantago lanceolata and P. major from central locations in their European range and from their latitudinal and elevation range edges (in northern Scandinavia and Swiss Alps, respectively). We also characterized patterns of genetic diversity and differentiation in populations using molecular markers. Range‐centre plants of P. major were adapted to conditions at the range centre, but performed similarly to range‐edge plants when grown at the range edges. There was no evidence for local adaptation when comparing central and edge populations of P. lanceolata. However, plants of both species from high elevation were locally adapted when compared with plants from high latitude, although the reverse was not true. This asymmetry was associated with greater genetic diversity and less genetic differentiation over the elevation gradient than over the latitudinal gradient. Our results suggest that adaptation in some range‐edge populations could increase their performance following climate change. However, responses are likely to differ along elevation and latitudinal gradients, with adaptation more likely at high‐elevation. Furthermore, based upon these results, we suggest that gene flow is unlikely to constrain adaptation in range‐edge populations of these species.  相似文献   

15.
Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.  相似文献   

16.
The metabolic performance of ectotherms is expected to be driven by the environment in which they live. Ecologically similar species with contrasting elevation distributions occurring in sympatry at mid‐elevations, provide good models for studying how physiological responses to temperature vary as a function of adaptation to different elevations. Under sympatry, at middle elevations, where divergent species ranges overlap, sympatric populations are expected to have similar thermal responses, suggesting similar local acclimation or adaptation, while observed differences would suggest adaptation to each species’ core range. We analysed the metabolic traits of sympatric species pairs from three ectotherm groups: reptiles (Reptilia: Lacertidae), amphibians (Amphibia: Salamandridae) and beetles (Coleoptera: Carabidae), living at different elevations, in order to test how adaptation to different elevations affects metabolic responses to temperature. We experimentally tested the thermal response of respiration rate (RR) and estimated potential metabolic activity (PMA) at three temperature regimes surrounding the groups’ optimal activity body temperatures. RR was relatively similar among groups and showed a positive response to increasing temperature, which was more pronounced in the high‐elevation species of reptiles and beetles. Relative to RR, PMA displayed a stronger and more consistent positive response to increased temperature in all three groups. For all three groups, the average biochemical capacity for metabolism (PMA) was higher in the range‐restricted, high‐elevation species, and this difference increased at higher temperatures in a consistent manner. These results, indicating consistent pattern in three independently evolved animal groups, suggest a ubiquitous adaptive syndrome and represent a novel understanding of the mechanisms shaping spatial biodiversity patterns. Our results also highlight the importance of geographic patterns for the mechanistic understanding of adaptations in physiological traits, including species’ potential to respond/adapt to global climate changes.  相似文献   

17.
Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.  相似文献   

18.
Plant distribution and the temperature coefficient of metabolism   总被引:6,自引:0,他引:6  
The spatial distribution of a plant species is limited by the range of climatic conditions to which the species can adapt. Temperature is one of the most significant determinants of plant distribution, but except for the effects of lethal limits, little is known about physiological changes in responses to differences in environmental temperature. In this study, temperature coefficients of non-photosynthetic metabolism have been determined in the normal environmental temperature range for selected annual and perennial plants. Distinct differences were found in the temperature coefficient of metabolism of woody perennial plants from high latitudes and high elevations and closely related low-latitude and low-elevation plants. Low-latitude and low-elevation woody perennials have Arrhenius temperature coefficients for metabolism that are larger than those for congeneric high-latitude and high-elevation plants. The Arrhenius temperature coefficient is not rapidly adapted to new environments. A simple function was developed relating Arrhenius temperature coefficient to latitude and elevation for accessions of three, woody, perennial species complexes of plants collected from a wide geographic range but grown in common gardens. Within these taxa, plants that experience broader ranges of temperature during growth in their native habitat have smaller temperature coefficients. Temperature coefficients also varied with growth stage or season. No similar relationship was found for annuals and herbaceous perennials. For the plants tested, Arrhenius temperature coefficients are high during early spring growth, but shift to lower values later in the season. The shift in Arrhenius temperature coefficients occurs early in the season for southern and low-elevation plants and progressively later for plants from further north or higher elevation. The changes in Arrhenius temperature coefficients result largely from increases in plant metabolic rates at lower temperatures while little change occurs in the rates at higher temperatures. Altering the temperature dependence of the control of metabolic rate is apparently an important means of response to climate change.  相似文献   

19.
Solidago altissima and S. gigantea were introduced from North America to Europe ~250 yr ago and are now considered aggressive weeds in abandoned fields and conservation areas. We studied patterns of genetic differentiation in these two species along their present latitudinal range in Europe (44-61 degrees N). Two generations of clonally propagated ramets from randomly selected genets of 24 populations of each species were grown in a common-garden experiment at latitude 47 degrees N from 1991 to 1992. Both species showed significant variation among populations in morphological and life-history characters: at this southern location, plants from northern populations were smaller and flowered earlier than plants from southern populations. The gradient of clinal variation was more pronounced in the second year of cultivation than in the first and was steeper in S. altissima than in S. gigantea. Within-population variation among genotypes was significant tot most characters in the case of S. altissima. Phenological rate (reciprocal of days to flowering) and size at maturity showed a significant negative correlation among populations bot not among genotypes within populations, indicating that genetic trade-offs may occur at one but not another infraspecific level. We suggest that the pattern of among-population variation reflects rapid adaptive population differentiation after introduction of the species to Europe.  相似文献   

20.
BACKGROUND AND AIMS: Allowing for dispersal limitation, a species' geographic distribution should reflect its environmental requirements. Comparisons among closely related species should reveal adaptive differentiation in species characteristics that are consistent with their differences in geographic distribution. This expectation was tested by comparing characteristics of seedlings of spruce species in relation to environmental factors representative of their current natural ranges. METHODS: Seedlings were grown from a total of 34 populations representing eight North American spruce (Picea) species in a controlled environment chamber for 140 d. Traits related to the potential of seedling establishment, including tolerance to stress events (high temperature, desiccation) were evaluated. Correlations were sought between these characteristics and modal values of latitude, aridity and continentality in the geographic range of each species. KEY RESULTS: Many seedling traits changed significantly in response to stress events, but only the response of chlorophyll concentration differed significantly among species. Components of seedling growth were good correlates of species distribution. Seedling relative growth rate (RGR) and specific leaf area (SLA) were positively correlated with latitude, and leaf weight ratio (LWR) negatively correlated with aridity. Seed mass was negatively correlated with latitude. CONCLUSIONS: Relationships found between seedling traits and geographical variation in environmental conditions suggest that factors such as temperature regime, water availability and perhaps litter depth affect species range in North American spruces. Seedling characteristics appear to be elements in a reasonably distinct environmental niche for each spruce species at the continental scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号