首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production.  相似文献   

2.
Fermentative biohydrogen production: trends and perspectives   总被引:1,自引:1,他引:0  
Biologically produced hydrogen (biohydrogen) is a valuable gas that is seen as a future energy carrier, since its utilization via combustion or fuel cells produces pure water. Heterotrophic fermentations for biohydrogen production are driven by a wide variety of microorganisms such as strict anaerobes, facultative anaerobes and aerobes kept under anoxic conditions. Substrates such as simple sugars, starch, cellulose, as well as diverse organic waste materials can be used for biohydrogen production. Various bioreactor types have been used and operated under batch and continuous conditions; substantial increases in hydrogen yields have been achieved through optimum design of the bioreactor and fermentation conditions. This review explores the research work carried out in fermentative hydrogen production using organic compounds as substrates. The review also presents the state of the art in novel molecular strategies to improve the hydrogen production.  相似文献   

3.
Microbiology of synthesis gas fermentation for biofuel production   总被引:1,自引:0,他引:1  
A significant portion of biomass sources like straw and wood is poorly degradable and cannot be converted to biofuels by microorganisms. The gasification of this waste material to produce synthesis gas (or syngas) could offer a solution to this problem, as microorganisms that convert CO and H2) (the essential components of syngas) to multicarbon compounds are available. These are predominantly mesophilic microorganisms that produce short-chain fatty acids and alcohols from CO and H2. Additionally, hydrogen can be produced by carboxydotrophic hydrogenogenic bacteria that convert CO and H2O to H2 and CO2. The production of ethanol through syngas fermentation is already available as a commercial process. The use of thermophilic microorganisms for these processes could offer some advantages; however, to date, few thermophiles are known that grow well on syngas and produce organic compounds. The identification of new isolates that would broaden the product range of syngas fermentations is desirable. Metabolic engineering could be employed to broaden the variety of available products, although genetic tools for such engineering are currently unavailable. Nevertheless, syngas fermenting microorganisms possess advantageous characteristics for biofuel production and hold potential for future engineering efforts.  相似文献   

4.
The challenges of climate change, dwindling fossil reserves, and environmental pollution have fuelled the need to search for clean and sustainable energy resources. The process of biohydrogen has been highlighted as a propitious alternative energy of the future because it has many socio-economic benefits such as non-polluting features, the ability to use diverse feedstocks including waste materials, the process uses various microorganisms, and it is the simplest method of producing hydrogen. However, the establishment of a biohydrogen driven economy has been hindered by low process yields due to the accumulation of inhibitory products. Over the past few years, various optimization methods have been used in literature. Among these, integration of bioprocesses is gaining increasing prominence as an effective approach that could be used to achieve a theoretical yield of 4 mol H2 mol?1 glucose. In batch integrated systems, dark fermentation is used as a primary process for conversion of substrates into biohydrogen, carbon dioxide, and volatile fatty acids. This is followed by a secondary anaerobic process for further biohydrogen conversion efficiency. This review discusses the current challenges facing scale-up studies in dark fermentation process. It elucidates the potential of batch integrated systems in biohydrogen process development. Furthermore, it explores the various integrated fermentation techniques that are employed in biohydrogen process development. Finally, the review concludes with recommendations on improvement of these integrated processes for enhanced biohydrogen yields which could pave a way for the establishment of a large-scale biohydrogen production process.  相似文献   

5.
Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70 degrees C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extreme-thermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70 degrees C, and fed with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H(2)/mol glucose consumed) but required longer start up time (1 month), while a biofilm reactor directly inoculated with the enrichment cultures reached stable state much faster (8 days) but with very low hydrogen yield (0.69 mol H(2)/mol glucose consumed). These results indicate that hydraulic pressure is necessary for successful immobilization of bacteria on carriers, while there is the risk of washing out specific high yielding bacteria.  相似文献   

6.
以解纤维梭菌( Clostridium cellulolyticum)和热纤梭菌( Clostridium thermocellum)为代表的产纤维小体梭菌可以直接完成从木质纤维素原料到乙醇的生物转化,是用于通过整合生物加工技术生产纤维素乙醇的优良候选菌株。然而,这些产纤维小体梭菌的纤维素降解效率及乙醇产量尚不能满足工业化生产的要求,其遗传改造技术的不成熟严重制约了通过定向代谢工程改造提高生产性能的进程。针对这些典型的产纤维小体菌株,各国科学家近年来在基于二类内含子的嗜中温及嗜高温遗传改造平台建立方面取得了较大突破,并通过靶向代谢工程改造,显著提高纤维素乙醇的产量。笔者对这些前期研究工作以及国内外相关研究成果进行系统的总结,并对构建的遗传改造工具的应用前景进行展望。  相似文献   

7.
Although there is great scientific and technological interest in examining the physiology and bioenergetics of microorganisms from extreme environments, difficulties encountered in their cultivation and lack of genetic systems hampers the investigation of these issues. As such, we have adapted methods for continuous cultivation of mesophilic organisms to extremes of temperature and pH to study extremophiles. Since the risk for contamination of extremophilic continuous cultures is relatively small, long-term, steady state experiments investigating physiological response to culture perturbations are possible. Experiments along these lines have provided insights into the significance of specific enzymes in the metabolism of particular substrates, in addition to providing a better understanding of stress response and unusual physiological characteristics of hyperthermophilic and extremely thermoacidophilic microorganisms. Several examples are provided here, including the thermal stress response of Metallosphaera sedula (T(opt) 74 °C) growing at pH 2.0, and the response of the heterotrophic hyperthermophiles Pyrococcus furiosus (T(opt) 98 °C), Thermococcus litoralis (T(opt) 88 °C) and T. maritima (T(opt) 80 °C) to changes in growth medium. Also discussed will be how the same experimental systems have been used to study exopolysaccharide production and biofilm formation by hyperthermophilic heterotrophs and facilitated the estimation of bioenergetic parameters for these organisms under a variety of growth conditions. Continuous culture, used in conjunction with genome sequence information, two-dimensional gel electrophoresis and differential gene expression, can provide important insights into the metabolism of high temperature extremophiles.  相似文献   

8.
Oh YK  Raj SM  Jung GY  Park S 《Bioresource technology》2011,102(18):8357-8367
The improvement of H2 production capabilities of hydrogen (H2)-producing microorganisms is a challenging issue. Microorganisms have evolved for fast growth and substrate utilization rather than H2 production. To develop good H2-producing biocatalysts, many studies have focused on the redirection and/or reconstruction of cellular metabolisms. These studies included the elimination of enzymes and carbon pathways interfering or competing with H2 production, the incorporation of non-native metabolic pathways leading to H2 production, the utilization of various carbon substrates, the rectification of H2-producting enzymes (nitrogenase and hydrogenase) and photophosphorylation systems, and in silico pathway flux analysis, among others. Owing to these studies, significant improvements in the yield and rate of H2 production, and in the stability of H2 production activity, were reached. This review presents and discusses the recent developments in biohydrogen production, with a focus on metabolic pathway engineering.  相似文献   

9.
Azo dye reduction by mesophilic and thermophilic anaerobic consortia   总被引:1,自引:0,他引:1  
The reduction of the azo dye model compounds Reactive Red 2 (RR2) and Reactive Orange 14 (RO14) by mesophilic (30 degrees C) and thermophilic (55 degrees C) anaerobic consortia was studied in batch assays. The contribution of fermentative and methanogenic microorganisms in both temperatures was evaluated in the presence of the fermentative substrate glucose and the methanogenic substrates acetate, H2/CO2, methanol, and formate. Additionally, the effect of the redox mediator riboflavin on electron shuttling was assessed. We concluded that the application of thermophilic anaerobic treatment is an interesting option for the reductive decolorization of azo dyes compared to mesophilic conditions. The use of high temperature may decrease or even take the place of the need for continuous redox mediator dosage in bioreactors, contrarily to the evident effect of those compounds on dye reduction under mesophilic conditions. Both fermenters and methanogens may play an important role during reductive decolorization of dyes, in which mediators are important not only for allowing the different microbes to participate more effectively in this complex reductive biochemistry but also for assisting in the competition for electrons between dyes and other organic and inorganic electron acceptors.  相似文献   

10.
The objective of this work was to evaluate the performance of a two-stage hydrogenogenic–methanogenic (H–M) semi-continuous process in terms of mass retention time (MRT) for hydrogenogenic stage (H-stage), feed source for methanogenic stage (M-stage) and thermal regime (35 and 55 °C) for both stages. The substrate was a model organic fraction of municipal solid wastes (OFMSW) at 35% total solids.In H-stage, mesophilic temperature had a positive significant effect on higher hydrogen productivities and lower amounts of hydrogen sinks compared to thermophilic operation. Calculations based on mass balances and biochemical stoichiometry confirmed that acid fermentation deviation was linked to low biohydrogen yields. The M-stage performance was influenced by both the temperature and feed source. Bioreactors in thermophilic regime performed better than mesophilic ones. Maximum methane productivity was 341 NmL CH4/(kgwmr d) that corresponded to the thermophilic bioreactor fed with fermented solids from H stage at 14 d MRT. The two-stage process showed higher gross energetic potential when compared to an only methanogenic process operated at equivalent MRT (control); this was due to a higher methane productivity in the M-stage of the series process. The main contribution of H-stage seemed to be associated to hydrolysis of the complex substrate thus generating metabolites for the M-stage rather than the hydrogen production itself.  相似文献   

11.
Permafrost environments in the Arctic are characterized by extreme environmental conditions that demand a specific resistance from microorganisms to enable them to survive. In order to understand the carbon dynamics in the climate-sensitive Arctic permafrost environments, the activity and diversity of methanogenic communities were studied in three different permafrost soils of the Siberian Laptev Sea coast. The effect of temperature and the availability of methanogenic substrates on CH4 production was analysed. In addition, the diversity of methanogens was analysed by PCR with specific methanogenic primers and by denaturing gradient gel electrophoresis (DGGE) followed by sequencing of DGGE bands reamplified from the gel. Our results demonstrated methanogenesis with a distinct vertical profile in each investigated permafrost soil. The soils on Samoylov Island showed at least two optima of CH4 production activity, which indicated a shift in the methanogenic community from mesophilic to psychrotolerant methanogens with increasing soil depth. Furthermore, it was shown that CH4 production in permafrost soils is substrate-limited, although these soils are characterized by the accumulation of organic matter. Sequence analyses revealed a distinct diversity of methanogenic archaea affiliated to Methanomicrobiaceae, Methanosarcinaceae and Methanosaetaceae. However, a relationship between the activity and diversity of methanogens in permafrost soils could not be shown.  相似文献   

12.
Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.  相似文献   

13.
《Biotechnology advances》2019,37(6):107384
The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe°, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.  相似文献   

14.
Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost was reported for the first time. Batch tests were carried out to analyze influences of several environmental factors on biohydrogen production from wheat straw wastes. The performance of biohydrogen production using the raw wheat straw and HCl pretreated wheat straw was then compared in batch fermentation tests. The maximum cumulative hydrogen yield of 68.1 ml H2/g TVS was observed at 126.5 h, the value is about 136-fold as compared with that of raw wheat straw wastes. The maximum hydrogen production rate of 10.14 ml H2/g TVS h was obtained by a modified Gompertz equation. The hydrogen content in the biogas was 52.0% and there was no significant methane observed in this study. In addition, biodegradation characteristics of the substrate were also discussed. The experimental results showed that the pretreatment of the substrate plays a key role in the conversion of the wheat straw wastes into biohydrogen by the composts generating hydrogen.  相似文献   

15.
Complex I, i.e. proton-pumping NADH:quinone oxidoreductase, is an essential component of the mitochondrial respiratory chain but produces superoxide as a side-reaction. However, conditions for maximum superoxide production or its attenuation are not well understood. Unlike for Complex III, it has not been clear whether a Complex I-derived superoxide generation at forward electron transport is sensitive to membrane potential or protonmotive force. In order to investigate this, we used Amplex Red for H(2)O(2) monitoring, assessing the total mitochondrial superoxide production in isolated rat liver mitochondria respiring at state 4 as well as at state 3, namely with exclusive Complex I substrates or with Complex I substrates plus succinate. We have shown for the first time, that uncoupling diminishes rotenone-induced H(2)O(2) production also in state 3, while similar attenuation was observed in state 4. Moreover, we have found that 5-(N-ethyl-N-isopropyl) amiloride is a real inhibitor of Complex I H(+) pumping (IC(50) of 27 microM) without affecting respiration. It also partially prevented suppression by FCCP of rotenone-induced H(2)O(2) production with Complex I substrates alone (glutamate and malate), but nearly completely with Complexes I and II substrates. Sole 5-(N-ethyl-N-isopropyl) amiloride alone suppressed 20% and 30% of total H(2)O(2) production, respectively, under these conditions. Our data suggest that Complex I mitochondrial superoxide production can be attenuated by uncoupling, which means by acceleration of Complex I H(+) pumping due to the respiratory control. However, when this acceleration is prevented by 5-(N-ethyl-N-isopropyl) amiloride inhibition, no attenuation of superoxide production takes place.  相似文献   

16.
Hydrogen is the fuel for the future, mainly due to its recyclability and nonpolluting nature. Biological hydrogen production processes are operated at ambient temperature and atmospheric pressures, thus are less energy intensive and more environmentally friendly as compared to thermochemical and electrochemical processes. Biohydrogen processes can be broadly classified as: photofermentation and dark fermentation. Two enzymes namely, nitrogenase and hydrogenase play an important role in biohydrogen production. Photofermentation by Purple Non-Sulfur bacteria (PNS) is a major field of research through which the overall yield for biological hydrogen production can be improved significantly by optimization of growth conditions and immobilization of active cells. The purpose of this paper is to review various processes of biohydrogen production using PNS bacteria along with several current developments. However, suitable process parameters such as carbon and nitrogen ratio, illumination intensity, bioreactor configuration and inoculum age may lead to higher yields of hydrogen generation using PNS bacteria.  相似文献   

17.
AIMS: To characterize cellulolytic, hydrogen-producing clostridia on a comparable basis. METHODS AND RESULTS: H(2) production from cellulose by six mesophilic clostridia was characterized in standardized batch experiments using MN301 cellulose, Avicel and cellobiose. Daily H(2) production, substrate degradation, biomass production and the end-point distribution of soluble fermentation products varied with species and substrates. All species produced a significant amount of H(2) from cellobiose, with Clostridium acetobutylicum achieving the highest H(2) yield of 2.3 mol H(2) mol(-1) hexose, but it did not degrade cellulose. Clostridium cellulolyticum and Clostridium populeti catalysed the highest H(2) production from cellulose, with yields of 1.7 and 1.6 mol H(2 )mol(-1) hexose from MN301 and 1.6 and 1.4 mol H(2) mol(-1) hexose from Avicel, respectively. These species also achieved 25-100% higher H(2) production rates from cellulose than the other species. CONCLUSIONS: These cellulolytic, hydrogen-producing clostridia varied in H(2) production, with Cl. cellulolyticum and Cl. populeti achieving the highest H(2) yields and cellulose degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentation of cellulosic materials presents a means of H(2) production from renewable resources. This standardized comparison provides a quantitative baseline for improving H(2) production from cellulose through medium and process optimization and metabolic engineering.  相似文献   

18.
Kabir MR  Kumar A 《Bioresource technology》2011,102(19):8972-8985
This study investigates the energy and environmental aspects of producing biohydrogen for bitumen upgrading from a life cycle perspective. Three technologies are studied for biohydrogen production; these include the Battelle Columbus Laboratory (BCL) gasifier, the Gas Technology Institute (GTI) gasifier, and fast pyrolysis. Three different biomass feedstocks are considered including forest residue (FR), whole forest (WF), and agricultural residue (AR). The fast pyrolysis pathway includes two cases: truck transport of bio-oil and pipeline transport of bio-oil. The net energy ratios (NERs) for nine biohydrogen pathways lie in the range of 1.3-9.3. The maximum NER (9.3) is for the FR-based pathway using GTI technology. The GHG emissions lie in the range of 1.20-8.1 kg CO? eq/kg H?. The lowest limit corresponds to the FR-based biohydrogen production pathway using GTI technology. This study also analyzes the intensities for acid rain precursor and ground level ozone precursor.  相似文献   

19.
As leaves enter woodland streams, they are colonized by both fungi and bacteria. To determine the contribution of each of these microbial groups to the decomposition process, comparisons of fungal and bacterial production are needed. Recently, a new method for estimating fungal production based on rates of [(sup14)C]acetate incorporation into ergosterol was described. Bacterial production in environmental samples has been determined from rates of [(sup3)H]leucine incorporation into protein. In this study, we evaluated conditions necessary to use these methods for estimating fungal and bacterial production associated with leaves decomposing in a stream. During incubation of leaf disks with radiolabeled substrates, aeration increased rates of fungal incorporation but decreased bacterial production. Incorporation of both radiolabeled substrates by microorganisms associated with leaf litter was linear over the time periods examined (2 h for bacteria and 4 h for fungi). Incorporation of radiolabeled substrates present at different concentrations indicated that 400 nM leucine and 5 mM acetate maximized uptake for bacteria and fungi, respectively. Growth rates and rates of acetate incorporation into ergosterol followed similar patterns when fungi were grown on leaf disks in the laboratory. Three species of stream fungi exhibited similar ratios of rates of biomass increase to rates of acetate incorporation into ergosterol, with a mean of 19.3 (mu)g of biomass per nmol of acetate incorporated. Both bacterial and fungal production increased exponentially with increasing temperature. In the stream that we examined, fungal carbon production was 11 to 26 times greater than bacterial carbon production on leaves colonized for 21 days.  相似文献   

20.
AIMS: To examine sulphur (S) deprivation in combination with the presence of methane (CH4) and changes in extracellular pH as a method to enhance in situ hydrogen (H2) generation during fermentation in the unicellular non-diazotrophic cyanobacteria Gloeocapsa alpicola and Synechocystis PCC 6803. METHODS AND RESULTS: The level of H2 production, measured using a gas chromatography, was determined in S-deprived cells of G. alpicola and Synechocystis PCC 6803 during fermentation. Starvation on S enhanced the rate of H2 production by more than fourfold in both strains. S-deprived cyanobacteria were able to maintain maximum rate of H2 production during at least 8 h of fermentation representing the entire dark period of a day. Increased H2 production was observed during dark anoxic incubation with a gas phase of 100% CH4 (up to four times) at lower pH of the medium (5.0-5.5). CONCLUSIONS: S-deprivation in combination with CH4, added or maybe produced by another micro-organisms, and changes in the pH of the media can be used to further increase the specific capacity of unicellular non-N2-fixing cyanobacteria to produce H2 during fermentation with the overall aim of applying it for outdoor photobiological H2 production. SIGNIFICANCE AND IMPACT OF THE STUDY: S-deprivation with respect to H2 production is well studied in the green algae Chlamydomonas reinhardtii while its application for H2 production in cyanobacteria is novel. Similarly, the stimulation of H2 generation in the presence of CH4 opens up new possibilities to increase the H2 production. Natural gas enriched with H2 seems to be a perspective fuel and may be an intermediate step on the pathway to the exploitation of pure biohydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号