首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spite of the predicted genetic and ecological costs of sex, most natural populations maintain sexual reproduction, even those capable of facultative parthenogenesis. Unfertilized eggs from natural populations of Drosophila mercatorum occasionally develop into viable adults, but obligately parthenogenetic populations are unknown in this species. To evaluate the microevolutionary forces that both favor and constrain the evolution of parthenogenesis in D. mercatorum, we have measured parthenogenetic rates across a natural, sexually reproducing population and characterized the life-history changes that accompany the transition from sexual to parthenogenetic reproduction in laboratory strains. A highly significant difference in parthenogenetic rate was found between two populations in close geographic proximity, with increased rate found with lower population density. Laboratory strains of parthenogenetic females suffered increased mortality and reduced egg viability relative to their virgin counterparts from a sexual strain. Lifetime egg production was similar across all strains, but a shift in peak egg production to an earlier age also occurred. The combination of these life-history traits resulted in a higher net reproductive value for sexual females, but because they also had a longer generation time, intrinsic rate of increase was not as dramatically different from parthenogenetic females. In environments with high early mortality, there may be no fitness disadvantage to parthenogenesis, but the predicted ecological advantage of a twofold increase in intrinsic rate of increase was not realized. These results support the theory of Stalker (1956) that parthenogenesis is favored in environments in which sexual reproduction is difficult or impossible.  相似文献   

2.
An enduring problem in evolutionary biology is the near ubiquity of sexual reproduction despite the inherent cost of transmitting only half the parent's genes to progeny. Queens of some ant species circumvent this cost by using selectively both sexual reproduction and parthenogenesis: workers arise from fertilized eggs, while new queens are produced by parthenogenesis. We show that queens of the ant Cataglyphis cursor maximize the transmission rate of their genes by regulating the proportion of fertilized and parthenogenetic eggs laid over time. Parthenogenetic offspring are produced in early spring, when workers raise the brood into sexuals. After the mating period, queens lay mostly fertilized eggs that will be reared as the non-reproductive caste.  相似文献   

3.
Parthenogenetic reproduction is taxonomically widespread and occurs through various cytological mechanisms, which have different impact on the genetic variation of the offspring. Extatosoma tiaratum is a facultatively parthenogenetic Australian insect (Phasmatodea), in which females oviposit continuously throughout their adult lifespan irrespective of mating. Fertilized eggs produce sons and daughters through sexual reproduction and unfertilized eggs produce female offspring via parthenogenesis. Here, we developed novel microsatellite markers for E. tiaratum and characterized them by genotyping individuals from a natural population. We then used the microsatellite markers to infer the cytological mechanism of parthenogenesis in this species. We found evidence suggesting parthenogenesis in E. tiaratum occurs through automixis with terminal fusion, resulting in substantial loss of microsatellite heterozygosity in the offspring. Loss of microsatellite heterozygosity may be associated with loss of heterozygosity in fitness related loci. The mechanism of parthenogenetic reproduction can therefore affect fitness outcomes and needs to be considered when comparing costs and benefits of sex versus parthenogenesis.  相似文献   

4.
Wang CY 《动物学研究》2011,32(6):689-695
There is a high proportion of parthenogenesis in insecta, and the parthenogenetic potential of insects is an important but often ignored threaten factor for the agricultural and forestry production. The maintenance of parthenogenetic species is a puzzling issue in evolutionary biology. In recent years, although the cellular mechanisms during parthenogenesis in some species have been well studied, the underlying genetic mechanisms that cause the switch from sexual reproduction to parthenogenesis have not been defined. While, understanding the genetic mechanism and evolutionary significance of the origin of parthenogenetic insects is crucial for preventing the pests in agricultural and forestry production. Here we summarized recent studies aimed at identifying the underlying genetic mechanism of parthenogenesis in insects, and briefly discussed its potential application in this filed.  相似文献   

5.
Parthenogenetic organisms are all female and reproduce clonally. The transition from sex to parthenogenesis is frequently associated with a major change in geographical distribution, often biasing parthenogenetic lineages towards environments that were severely affected by the glacial cycles of the Late Pleistocene. It is difficult to interpret these patterns as arising simply as a result of selection for the demographic effects of parthenogenesis because many parthenogenetic organisms are also hybrids. Here, I argue that many cases of geographical parthenogenesis might be best seen as part of a broader pattern of hybrid advantage in new and open environments. Parthenogenesis in these cases could have a more secondary role of stabilizing strongly selected hybrid genotypes. In this context, geographical parthenogenesis might tell us more about the role of hybridization in evolution than about the role of sex.  相似文献   

6.
It has been postulated that obligate asexual lineages may persist in the long term if they escape from negative interactions with either sexual lineages or biological enemies; and thus, parthenogenetic populations will be more likely to occur in places that are difficult for sexuals to colonize, or those in which biological interactions are rare, such as islands or island-like habitats. Ischnura hastata is the only known example of natural parthenogenesis within the insect order Odonata, and it represents also a typical example of geographic parthenogenesis, as sexual populations are widely distributed in North America, whereas parthenogenetic populations of this species have only been found at the Azores archipelago. In order to gain insight in the origin and distribution of parthenogenetic I. hastata lineages, we have used microsatellites, mitochondrial and nuclear DNA sequence data, to examine the population genetic structure of this species over a wide geographic area. Our results suggest that sexual populations of I. hastata in North America conform to a large subdivided population that has gone through a recent spatial expansion. A recent single long distance dispersal event, followed by a demographic expansion, is the most parsimonious hypothesis explaining the origin of the parthenogenetic population of this species in the Azores islands.  相似文献   

7.
The dominance of sex in Metazoa is enigmatic. Sexual species allocate resources to the production of males, while potentially facing negative effects such as the loss of well‐adapted genotypes due to recombination, and exposure to diseases and predators during mating. Two major hypotheses have been put forward to explain the advantages of parthenogenetic versus sexual reproduction in animals, that is, the Red Queen hypothesis and the Tangled Bank/Structured Resource Theory of Sex. The Red Queen hypothesis assumes that antagonistic predator—prey/ parasite–host interactions favor sex. The Structured Resource Theory of Sex predicts sexual reproduction to be favored if resources are in short supply and aggregated in space. In soil, a remarkable number of invertebrates reproduce by parthenogenesis, and this pattern is most pronounced in oribatid mites (Oribatida, Acari). Oribatid mites are abundant in virtually any soil across very different habitats, and include many sexual and parthenogenetic (thelytokous) species. Thereby, they represent an ideal model group to investigate the role of sexual versus parthenogenetic reproduction across different ecosystems and habitats. Here, we compiled data on oribatid mite communities from different ecosystems and habitats across biomes, including tropical rainforests, temperate forests, grasslands, arable fields, salt marshes, bogs, caves, and deadwood. Based on the compiled dataset, we analyzed if the percentage of parthenogenetic species and the percentage of individuals of parthenogenetic species are related to total oribatid mite density, species number, and other potential driving factors of the reproductive mode including altitude and latitude. We then interpret the results in support of either the Red Queen hypothesis or the Structured Resource Theory of Sex. Overall, the data showed that low density of oribatid mites due to harsh environmental conditions is associated with high frequency of parthenogenesis supporting predictions of the Structured Resource Theory of Sex rather than the Red Queen hypothesis.  相似文献   

8.
The present paper deals with a collection of plant fossils from the Wuyun Group of Heilongjiang Province. These fossils belong to 28 families, 39 genera and 53 species. The flora is composed of 7 species of pteridophytes, 8 of conifers and 37 of angiosperms. All have been fully described, of which ten are new species. Most elements of this flora are subtropic or warm-temperate, with only a few of them are temperate ones. The flora consists of conifers and broad-leaved trees adapted to humid warm-temperate or subtropic climate. With the physiognomy of leaves, 40 per cent of them are of entire margin, and most are medium-sized, with some megaphyllous. The nervation is mostly palmate. These characters indicate that the climate was warm-temperate or subtropic. Among 35 genera known from the Late Cretaceous of East Asia, 27 are also found in North America, which indicates that the floristic relationship between East Asia and North Americal was closer at that time than it is now. Therefore the number of genera in common has been decreasing through the age, because these two regions have been detached from each other since the late Eocene, as a result of continental drift. Only some relic forms left on both sides, and only 4.1% of genera are common to both continents. After the early Tertiary the floras of East Asia and North America have been developing independently. The Chinese flora of the Late Cretaceous may be divided into three Zones from the north to the south: (1) warm temperate-subtropic zone, rich in Metasequoia, Ginkgo, Trochodendroides, Platanus, Trochodendron, Protophyllum, Ampelopsis Pterospermites and Menispermites; (2) subtropic or dry subtropic transitional zone; and (3) subtropictropic zone, rich in Brachyphyllum, Cinnamomum, Nectandra and Palms. The Wuyun flora is considered closely related to the Chajiayang Group and SikhoteAlin flora of USSR, with 15 genera in common and also related to the Kuji flora of Japan (Cenonian), with 11 genera in common. It is interesting to note that 11 genera are also found in North America (Canada and Alaska) of the Late Cretaceous. The palynological assemblage of the Wuyun flora is closely related to Minshui flora of the Souliao Basin, 15 genera being common to the both. Seventy per cent of megafossils of the Wuyun flora have become extinct, which seems to show that the age of the flora is older than Paleocene and is assigned to the Latest Late Crataceous (Maestrichtian-Dani-an).  相似文献   

9.
Geographic parthenogenesis is a distribution pattern, in which parthenogenetic populations tend to live in marginal habitats, at higher latitudes and altitudes and island‐like habitats compared with the sexual forms. The facultatively parthenogenetic ant Platythyrea punctata is thought to exhibit this general pattern throughout its wide range in Central America and the Caribbean Islands. Workers of P. punctata from the Caribbean produce diploid female offspring from unfertilized eggs by thelytokous parthenogenesis, and mated females and males are rare. In contrast, workers in one colony from Costa Rica were incapable of thelytoky; instead mated workers produced all female offspring. Because sample sizes were very low in former studies, we here use microsatellite markers and explicit tests of thelytoky to examine the population genetic structure of ancestral and derived populations of P. punctata throughout the Caribbean and Central America. Populations from the Caribbean islands were fully capable of parthenogenesis, and population genetic signatures indicate that this is the predominant mode of reproduction, although males are occasionally produced. In contrast, the northernmost population on the mainland (Texas) showed signatures of sexual reproduction, and individuals were incapable of reproduction by thelytoky. Contrary to expectations from a geographic parthenogenesis distribution pattern, most parts of the mainland populations were found to be facultatively thelytokous, with population genetic signatures of both sexual and parthenogenetic reproduction.  相似文献   

10.
Parthenogenesis has evolved independently in more than 10 Drosophila species. Most cases are tychoparthenogenesis, which is occasional or accidental parthenogenesis in normally bisexual species with a low hatching rate of eggs produced by virgin females; this form is presumed to be an early stage of parthenogenesis. To address how parthenogenesis and sexual reproduction coexist in Drosophila populations, we investigated several reproductive traits, including the fertility, parthenogenetic capability, diploidization mechanisms, and mating propensity of parthenogenetic D. albomicans. The fertility of mated parthenogenetic females was significantly higher than that of virgin females. The mated females could still produce parthenogenetic offspring but predominantly produced offspring by sexual reproduction. Both mated parthenogenetic females and their parthenogenetic-sexual descendants were capable of parthenogenesis. The alleles responsible for parthenogenesis can be propagated through both parthenogenesis and sexual reproduction. As diploidy is restored predominantly by gamete duplication, heterozygosity would be very low in parthenogenetic individuals. Hence, genetic variation in parthenogenetic genomes would result from sexual reproduction. The mating propensity of females after more than 20 years of isolation from males was decreased. If mutations reducing mating propensities could occur under male-limited conditions in natural populations, decreased mating propensity might accelerate tychoparthenogenesis through a positive feedback mechanism. This process provides an opportunity for the evolution of obligate parthenogenesis. Therefore, the persistence of facultative parthenogenesis may be an adaptive reproductive strategy in Drosophila when a few founders colonize a new niche or when small populations are distributed at the edge of a species'' range, consistent with models of geographical parthenogenesis.  相似文献   

11.
Microbe-associated parthenogenesis (thelytoky) has been discovered in nineTrichogramma species, parasitoids of mainly lepidopteran eggs. Parthenogenetic and bisexual conspecifics co-occur in many field populations. As an initial step to understand the dynamics of these two reproductive strategies we studied the effect of microbe-associated parthenogenesis on fecundity. The fecundity of two parthenogenetic isofemale lines ofT. pretiosum and one ofT. deion was compared with bisexual lines derived from them by antibiotic treatment. In all three cases parthenogenetic females were less fecund over their lifetime than bisexual females. Also, parthenogenetic females produced fewer daughters in two cases and in one case a similar number of daughters as their respective bisexual counterparts. The lack of mating and insemination was excluded as an explanation for the reduced fecundity of parthenogenetic females, because mated and virgin parthenogenetic females produce the same number of offspring. Antibiotic treatment can also be excluded because females of field-collected bisexual line treated with antibiotics produced the same number of offspring as untreated females. The reduced fecundity of parthenogenetic females was caused by a lower number of eggs being laid rather than by a greater developmental mortality. Parthenogenetic females produced less daughters than bisexual females when host availability was not limiting, but when host availability was severely limited, parthenogenetic females produced more daughters than the bisexual females.  相似文献   

12.
Thelytokous (all-female producing) parthenogenesis, in some cases, involves reproductive advantages against obligate sexual reproduction. However, the completion of parthenogenesis takes multiple steps without the help of males, and thus preadaptation that meets those requirements will be an important factor for the evolution of parthenogenesis. The Japanese subterranean termite, Reticulitermes speratus, is known to have the ability of parthenogenetic colony foundation, where females that failed to mate with males found colonies cooperatively with partner females and reproduce by parthenogenesis. In this study, we compared the parthenogenetic ability and the colony initiation behavior among six Reticulitermes species in Japan. All species other than R. speratus were not able to reproduce parthenogenetically. Nevertheless, females of these species without the parthenogenetic ability performed homosexual female–female colony initiation and produced eggs without fertilization. In addition, in one species without parthenogenetic reproduction, R. kanmonensis, female–female pair initiated founding behavior as quickly as a heterosexual pair. These results suggest that female–female colony initiation and virgin egg-laying are predominant characters among the genus Reticulitermes and provide a preadaptive condition for parthenogenetic colony foundation in R. speratus.  相似文献   

13.
Natural populations of sexually reproducing Drosophila mercatorum are capable of a very low rate of parthenogenesis, but this mode of reproduction has apparently never characterized an entirely asexual population in this species. The high abortion rate observed in laboratory parthenogenetic lines suggests that developmental constraints may cause the failure of this trait to spread in nature. To investigate the basis of this developmental instability and how it may affect the evolution of parthenogenesis in natural populations, early embryonic development was compared between one sexual and four parthenogenetic laboratory strains of D. mercatorum. There is a large amount of variation within a given parthenogenetic strain, suggesting that parthenogenesis is associated with a general breakdown of developmental stability. There is relatively little variation among different parthenogenetic strains, suggesting that most abortions are due to a feature inherent to parthenogenetic reproduction rather than a feature of a particular genome. Likewise, there is little variation between parthenogenetic and sexual strains in the causes of abortions, suggesting that the developmental problems encountered by parthenogenetic lineages are not unique to parthenogens. Thus, the failure of parthenogenesis to spread within D. mercatorum can be attributed to no particular developmental constraint per se operating after the initiation of embryogenesis. However, the overall increase in all developmental problems that occurs with the transition from sexual to parthenogenetic development suggests that the high degree of developmental instability associated with parthenogenesis may be considered a developmental constraint in its own right.  相似文献   

14.
Parthenogenetic strains of several species have been found in the genus Drosophila. The mode of diploidization in the eggs of females has been found to be post-meiotic nuclear fusion. The genetic basis for this parthenogenesis is not understood but is believed to be under the control of a complex polygenic system. We found parthenogenetic females in an isofemale strain (LAE345) of D. pallidosa-like collected in 1981 at Lae, Papua New Guinea, and established a parthenogenetically reproducing strain. Parthenogenetic strains of D. ananassae and D. pallidosa collected at Taputimu, American Samoa had also been established by Futch (1972). D. ananassae, D. pallidosa and D. pallidosa-like are very closely related species belonging to the ananassae complex of the ananassae species subgroup of the melanogaster species group. Using these three species, we found that more than 80% of females from parthenogenetic strains produced progeny parthenogenetically and that inter-specific hybrid females also produced impaternate progeny. In the present report, we demonstrate that the mode of parthenogenesis of D. ananassae appears to be the post-meiotic nuclear doubling of a single meiotic product, and that a major gene responsible for the parthenogenesis maps to the left arm of the second chromosome of D. ananassae. We also suggest that the genetic basis for parthenogenesis capacity may be identical among the three closely related species. We discuss the function of the gene required for parthenogenesis and its significance for the evolutionary process.  相似文献   

15.
Many aphid species have shown remarkable adaptability by invading new habitats and agricultural crops, although they are parthenogenetic and might be expected to show limited genetic variation. To determine if the mode of reproduction limits the level of genetic variation in adaptively important traits, we assess variation in 15 life history traits of the pea aphid, Acyrhosiphon pisum (Harris), for five populations sampled along a north-south transect in central North America, and for three traits for three populations from eastern Australia. The traits are developmental times and rates as affected by temperature, body weights as affected by temperature, fecundity, measures of migratory tendency, and photoperiodic responses. The most southerly population from North America is shown to be obligately parthenogenetic, as are the Australian populations, and the four more northerly North American populations are facultatively parthenogenetic with the number of parthenogenetic generations per year increasing from north to south. The broad-sense heritabilities of life history traits varied from 0.36 to 0.71 for nine quantitive traits based on a comparison of within-and between-lineage variances. Using these traits, 7–13 distinct genotypes (i.e. clones) were identified among each of the 18 lines sampled from the North American populations, but the number did not differ significantly among populations. The level of genetic variation differed from trait to trait. For 4 of 12 quantitative traits, the level of variation in the obligately parthenogenetic population from North America was lowest, but significantly lower than all the sexual populations for only 1 trait. The obligately parthenogenetic population had the highest level of genetic variation for two traits, and had intermediate levels for the others. The most northerly population, which was sexual and had relatively few parthenogenetic generations each year, had the lowest level of variation for 5 of 12 traits and the highest level of variation for 2 traits. There was no decline in variability from north to south correlated with the increase in the annual number of parthenogenetic generations. The Australian populations showed no less variation than the North American populations for two of three traits, although the pea aphid was introduced to Australia only 5 years prior to the study, whereas the aphid has been in North America for at least 100 years. The mode of reproduction has not had a substantial impact on the level of genetic variation in life history traits of the pea aphid, but there are population-specific factors that effect the level of variation in certain traits.  相似文献   

16.
Naturally occurring unisexual reproduction has been documented in less than 0.1% of all vertebrate species. Among vertebrates, true parthenogenesis is known only in squamate reptiles. In all vertebrate cases that have been carefully studied, the clonal or hemiclonal taxa have originated through hybridization between closely related sexual species. In contrast, parthenogenetic reproduction has arisen in invertebrates by a variety of mechanisms, including likely cases of “spontaneous” (nonhybrid) origin, a situation not currently documented in natural populations of vertebrates. Here, we present molecular data from the Neotropical night lizard genus Lepidophyma that provides evidence of independent nonhybrid origins for diploid unisexual populations of two species from Costa Rica and Panama. Our mitochondrial and nuclear phylogenies are congruent with respect to the unisexual taxa. Based on 14 microsatellite loci, heterozygosity (expected from a hybrid origin) is low in Lepidophyma reticulatum and completely absent in unisexual L. flavimaculatum. The unique value of this system will allow direct comparative studies between parthenogenetic and sexual lineages in vertebrates, with an enormous potential for this species to be a model system for understanding the mechanisms of nonhybrid parthenogenesis.  相似文献   

17.
The evolution of parthenogenesis is typically associated with hybridization and polyploidy. These correlates of parthenogenesis may have important physiological consequences that need be taken into account in understanding the relative merits of sexual and parthenogenetic reproduction. We compared the thermal sensitivity of aerobically sustained locomotion in hybrid/triploid parthenogenetic races of the gecko Heteronotia binoei and their diploid sexual progenitors. Endurance times at low temperature (10 degrees , 12.5 degrees , and 15 degrees C, 0.05 km h(-1)) were significantly greater in parthenogenetic females than in sexual females. Comparison of oxygen consumption rates during sustained locomotion at increasing speeds (0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 km h(-1), 25 degrees C) indicated that parthenogenetic lizards have higher maximum oxygen consumption rates and maximum aerobic speeds than do female sexual geckos. In addition, parthenogenetic geckos showed greater levels of voluntary activity at 15 degrees C than did sexual geckos, although this pattern appears strongest in comparison to male sexual forms. Parthenogenetic lineages of Heteronotia thus have an advantage over sexual lineages in being capable of greater aerobic activity. This result is opposite of that found in prior studies of parthenogenetic teiid lizards (genus Cnemidophorus) and highlights the idiosyncratic nature of phenotypic evolution in parthenogens of hybrid origin.  相似文献   

18.
Within the genus Cnemidophorus, parthenogenesis has arisen by hybridization several times. This provides the opportunity to investigate general features of hybridization events that result in the formation of parthenogenetic lineages. The relationships of mtDNA from all bisexual species of Cnemidophorus known to be parents of parthenogens were investigated to evaluate phylogenetic constraints on the hybrid-origin of parthenogenesis. No phylogenetic clustering of the parental species, either maternal or paternal, was apparent. However, the combination of bisexual species that have resulted in parthenogenetic lineages are generally distantly related or genetically divergent. This contrasts with the expectation if parthenogenesis in hybrids is due to the action of a single rare allele, but is consistent with the hypothesis that some minimal level of divergence is necessary to stimulate parthenogenetic reproduction in hybrids.  相似文献   

19.
The occurrence of parthenogenesis in springtails of the Palaearctic was studied. Parthenogenetic species were recorded in all main phylogenetic lines and were more abundant in the families that included species with euedaphic life forms. Among Onychiuridae and Isotomidae, the fraction of species capable of reproducing without males was about 10–15%. The deep soil dwellers showed weaker capacities for aggregation in experiments. The parthenogenetic species comprise the majority of collembolan populations in different biotopes, up to 78% in forest soils and 50% in chernozems. Occupation of deep soil horizons and expansion of distribution ranges appear to be the result of biological progress of the species which have switched to parthenogenesis.  相似文献   

20.
Lattorff HM  Moritz RF  Fuchs S 《Heredity》2005,94(5):533-537
The evolution and maintenance of parthenogenetic species are a puzzling issue in evolutionary biology. Although the genetic mechanisms that act to restore diploidy are well studied, the underlying genes that cause the switch from sexual reproduction to parthenogenesis have not been analysed. There are several species that are polymorphic for sexual and parthenogenetic reproduction, which may have a genetic basis. We use the South African honeybee subspecies Apis mellifera capensis to analyse the genetic control of thelytoky (asexual production of female workers). Due to the caste system of honeybees, it is possible to establish classical backcrosses using sexually reproducing queens and drones of both arrhenotokous and thelytokous subspecies, and to score the frequency of parthenogenesis in the resulting workers. We found Mendelian segregation for thelytoky of egg-laying workers, which appears to be controlled by a single major gene (th). The segregation pattern indicates a recessive allele causing thelytoky. We found no evidence for maternal transmission of bacterial endosymbionts controlling parthenogenesis. Thelytokous parthenogenesis of honeybee workers appears to be a classical qualitative trait, because we did not observe mixed parthenogenesis (amphitoky), which might be expected in the case of multi-locus inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号