首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental heterogeneity can cause the intensity and direction of selection to vary in time and space. Yet, the effects of human-induced environmental changes on sexual selection and the expression of mating traits of native species are poorly known. Currently, the breeding habitats of the three-spined stickleback Gasterosteus aculeatus are changing in the Baltic Sea because of eutrophication and increased growth of algae. Here we show that enhanced growth of filamentous algae increases the costs of mating by inducing an increase in the time and energy spent on courtship and mate choice. This is not followed by a concomitant increase in mate attraction, but instead the strength of selection on male red nuptial coloration and courtship activity is relaxed. Thus, the high investment into the costly sexually selected traits is maladaptive under the new conditions, and the mating system mediates a negative effect of the environmental change on the population. We attribute these environmentally induced changes in the benefit of the mating traits and in the strength of sexual selection to reduced visibility in dense vegetation. Anthropogenic disturbances hence affect the selection pressures that mould the species, which could have long-term effects on the viability and evolution of the populations.  相似文献   

2.
Measuring sexual selection in changing environments is challenging, as the targets and mechanisms of selection can vary with the environment. Here, we present the results of an unusually comprehensive study of the influence of human-disturbed habitat structure on sexual selection in the threespine stickleback Gasterosteus aculeatus. We included all episodes of sexual selection, used molecular parentage assignments, and applied several metrics of sexual selection. The results show that the influence of altered habitat structure on sexual selection dynamics is more complex than previously thought, with the influence varying among selection episodes and male groups. Increased habitat structure relaxed the opportunity for sexual selection across episodes, but incorrect conclusions were reached if the analysis was restricted to resource-holding males or based on mating success. A novel finding, revealed by the parentage analysis, is a reduction in sneak fertilization in disturbed environments. This relaxed the opportunity for sexual selection as sneaking had increased the skew in mating success in less structured habitats, because of nesting males with a high mating success sneaking the most. Thus, the influence of environmental change on an alternative reproductive behavior amplified alterations in sexual selection. This emphasizes the need to consider more hidden processes than previously done when investigating how human disturbances modify sexual selection.  相似文献   

3.
Sexual selection is most often thought of as acting on organismal traits, such as size or color. However, individuals’ habitat use may also affect mating success. Here, we show that, in threespine stickleback, nest depth can be a target of sexual selection. In postglacial lakes in British Columbia, male threespine stickleback nest in a narrow range of depths. Prior studies revealed heritable variation in males’ preferred nest microhabitat. We surveyed four natural populations, finding that male stickleback with shallower nests were more successful at breeding. Indeed, nest depth was a much stronger predictor of male mating success than more commonly studied targets of sexual selection in stickleback (size, condition, shape, color, infection status). This selection on nest depth means that variance in fitness changed predictably across microhabitats, altering the opportunity for sexual selection to act on other traits. Accordingly, we show that sexual selection on other male traits is strongest where variance in nesting success is highest (at intermediate nest depths in some lakes). We conclude that males’ choice of nesting microhabitat is an especially important target of sexual selection, resulting in fine‐scale spatial variation in sexual selection on other traits.  相似文献   

4.
Abstract Studies on arrival time to breeding areas show that high-quality males usually arrive first and gain the highest reproductive success. This is generally assumed to be due to phenotype-dependent costs and benefits of early arrival. We show that the opposite arrival order can occur, probably due to selection on poor-quality males to increase their chances of reproduction. In a fish species, the threespine stickleback, Gasterosteus aculeatus , small males arrived before larger males at the breeding grounds. Early arrival was costly because predation risk was at its highest at the start of the season and early territory establishment was selected against, as demonstrated by selection coefficients for territory maintenance and hatching success. Large males probably postponed arrival until females were available to decrease predation risk costs and increase offspring production. An experimental study showed that a delay in arrival of large males does not decrease their probability of reproduction, because large males are able to take over nest sites from small males. Small males, on the other hand, are less likely to establish territories in competition with large males but can pay the costs of early arrival in exchange for the benefit of access to territories. Thus, whereas natural selection favors later arrival, sexual selection through competition for breeding territories favors early arrival in small, competitively inferior males. This results in the benefits of early arrival depending on the competitive ability of the male, which favors size-dependent optimal arrival times.  相似文献   

5.
Seasonal change in the opportunity for sexual selection   总被引:1,自引:0,他引:1  
Environmental and population parameters that influence the strength of sexual selection may vary considerably over the course of the reproductive season. However, the potential for sexual selection frequently fails to translate into variation in reproductive success among individuals. We investigated seasonal changes in variation in reproductive success, measured as the opportunity for sexual selection, using parentage analysis in 20 experimental populations of the European bitterling (Rhodeus amarus, Cyprinidae), a small freshwater fish with a promiscuous, resource-based mating system. We showed that although the largest males sired most offspring over the entire reproductive season, variation in reproductive success and hence the opportunity for sexual selection was low at the start of the season but increased significantly at its end. This seasonal difference probably arose from the superior competitive endurance of large males and from a higher temporal clustering of reproductively active females at the start of the breeding season than later in the season. The spatial distribution of oviposition sites had a negligible effect on the variation in reproductive success. We discuss the potential implications of our results for the importance and strength of sexual selection in natural populations.  相似文献   

6.
A stickleback with brilliant white dorsal breeding colours is widely distributed in north-eastern Nova Scotia, Canada, where it often breeds sympatrically with the threespine stickleback, Gasterosteus aculeatus. Breeding males are highly conspicuous and visible at distances of 20 m or more whereas sympatric G. aculeatus are cryptic and difficult to detect even at 2 m. The white stickleback nests only above the substrate in filamentous algae, where G. aculeatus nests only on the substrate. The white stickleback is smaller in size and more terete than G. aculeatus , but it is morphologically similar in having a complete row of lateral plates and similar lateral plate and gill raker numbers. The white stickleback occurs only in environments where there are filamentous algae (which appears to be an obligatory nesting substrate) and where the water is clear, saline and relatively still. Female choice tests in the laboratory show that the white stickleback is reproductively isolated from G. aculeatus , and field observations on natural spawning support this conclusion. We suggest that the bright breeding colouration may have evolved through sexual selection and/or to advertise unprofitability to predators.  相似文献   

7.
Male sticklebacks display multiple ornaments, and these ornamentshave been shown to be preferred by females in laboratory experiments.However, few field data exist, and it is not known whether thesepreferences are simultaneously or sequentially operative ina single population. We report correlates of reproductive successin two stickleback populations that differ in their ecology,over several periods within their breeding season. In both populationslarger males had higher reproductive success, but not in all periodsof the breeding season. Reproductive success increased withredness of the throat only in the Wohlensee population, andonly in one period that was characterized by low average success.In the Wohlensee population, the parasitic worm Pomphorhynchuslaevis is abundant, and reproductive success decreased withthe presence of the parasite. In the Roche population, maleswith nests concealed in a plant had higher mating success. Thesenests were less likely to fail, suggesting that females preferredto spawn in concealed nests because of higher offspring survivorship.The different sexual traits appear to reveal different aspectsof male quality (multiple message hypothesis): females probablyfind large males attractive because of their higher paternalquality, but it seems more likely that red males are preferred forbetter genetic qualities. Females also discriminate on territoryquality, and male traits may be important in competition forthese territories. The correlates of reproductive success werenot consistent during the season, probably due to changes inthe availability of ripe females. Such fluctuating selectionpressures will contribute to the maintenance of genetic variationin sexual traits.  相似文献   

8.
Changes in the environment due to human activities are becomingincreasingly common. A serious problem in aquatic environmentsis increased water turbidity due to phytoplankton algal growth.This may affect the breeding system of fishes, especially thosewith a visually based mating system. Here we show that increasedturbidity affects sexual selection in the threespine stickleback(Gasterosteus aculeatus) through impaired possibility for visuallybased mate choice. In a laboratory mate preference and matechoice experiment on sticklebacks from the Baltic Sea, whichis an area suffering from increased turbidity due to human activities,we found that females spent more time with and visited moreoften males in clear water than males in turbid water. For malesin turbid water to receive the same amount of interest fromfemales as males in clear water, they needed to court significantlymore. Thus, turbid water induced selection for higher courtshipactivity. However, the final spawning decision of the femalesdid not depend on water turbidity, which suggests that nonvisualcues determined the final spawning decision. Because visualcues are important in mate attraction, increased turbidity affectsan important evolutionary force, sexual selection, which mayhave further consequences for the evolution of the sexual displaysand preferences. Differences in visual conditions could hencebe one factor that has lead to differences among sticklebackpopulation in the use of sexual signals.  相似文献   

9.
The steps by which isolated populations acquire reproductive incompatibilities remain poorly understood. One potentially important process is postcopulatory sexual selection because it can generate divergence between populations in traits that influence fertilization success after copulation. Here we present a comprehensive analysis of this form of reproductive isolation by conducting reciprocal crosses between variably diverged populations of stalk‐eyed flies (Teleopsis dalmanni). First, we measure seven types of reproductive incompatibility between copulation and fertilization. We then compare fertilization success to hatching success to quantify hybrid inviability. Finally, we determine if sperm competition acts to reinforce or counteract any incompatibilities. We find evidence for multiple incompatibilities in most crosses, including failure to store sperm after mating, failure of sperm to reach the site of fertilization, failure of sperm to fertilize eggs, and failure of embryos to develop. Local sperm have precedence over foreign sperm, but this effect is due mainly to differences in sperm transfer and reduced hatching success. Crosses between recently diverged populations are asymmetrical with regard to the degree and type of incompatibility. Because sexual conflict in these flies is low, postcopulatory sexual selection, rather than antagonistic coevolution, likely causes incompatibilities due to mismatches between male and female reproductive traits.  相似文献   

10.
Human-induced rapid environmental changes often cause behavioural alterations in animals. The consequences that these alterations in turn have for the viability of populations are, however, poorly known. We used a population of threespine sticklebacks Gasterosteus aculeatus in the Baltic Sea to investigate the consequences of behavioural responses to human-induced eutrophication for offspring production. The investigated population has been growing during the last decades, and one cause could be increased offspring production. We combined field-based surveys with laboratory-based experiments, and found that an enhanced growth of macroalgae relaxed agonistic interactions among males. This allowed more males to nest, improved hatching success, and increased the number of reproductive cycles that males completed. Thus, the behavioural responses were adaptive at the individual level and increased offspring production. However, a larger proportion of small males of low competitive ability reproduced in dense vegetation. As male size and dominance are heritable, this could influence the genetic composition of the offspring. Together with a higher number of offspring produced, this could influence natural selection and the rate of adaptation to the changing environment. Thus, behavioural responses to a rapid human-induced environmental change can influence offspring production, with potential consequences for population dynamics and evolutionary processes.  相似文献   

11.
The role of habitat use in generating individual variation in fitness has rarely been examined empirically in natural populations of long‐lived mammals, particularly for both sexes simultaneously. This is the case despite the increase in studies attempting to understand evolutionary change in such populations. Using data from the St. Kilda Soay sheep population, we quantified the association between lifetime reproductive performance (lifetime breeding and reproductive success) and the proportion of the home range covered by a key grass species, H. lanatus, for 490 females and 304 males. Increased H. lanatus cover was associated only with increased female lifetime reproductive success, but increased lifetime breeding success for both sexes, arising through increased male longevity and increased female fecundity. This work suggests that improved understanding of the causes and consequences of fitness differences will likely require us to better account for habitat‐derived individual variation, and to do so for the sexes appropriately.  相似文献   

12.
Fitness costs of signalling are essential in order for reliable sexual signalling to prevail when the interests of the sexes conflict. This means that signalling can be subjected to a life history trade-off between present and future signalling effort. Here, I show that three-spined stickleback males (Gasterosteus aculeatus), who have a single breeding season during which they breed repeatedly, change their red nuptial coloration over the season depending on their body size at the start of breeding. Large males that completed several breeding cycles increased their red coloration over the season, whereas small males, who completed only a few cycles, did not. The increase in coloration was accompanied by an increase in parental success when males were energy constrained, but not when they had access to an unlimited food supply. Red coloration was thus an honest signal of male parental ability despite changes in signal expression when both signalling and parental care were costly and the investments in them changed simultaneously over the reproductive lifetime. However, the honesty of the signal varied over a lifetime. At the penultimate cycle, bright males cannibalized some of their eggs, probably to increase survival to the last cycle, whereas males cared for their offspring independent of coloration at the ultimate cycle.  相似文献   

13.
In the breeding system of Pacific salmon, females compete for oviposition territories, and males compete to fertilize eggs. The natural selection in females and sexual selection in males likely has been responsible for their elaborate breeding morphologies and the dimorphism between the sexes. We quantified direct-selection intensities during breeding on mature coho salmon (Oncorhynchus kisutch), measured for seven phenotypic characters, including three secondary sexual characters. Wild and sea-ranched hatchery coho were used to enhance the range of phenotypes over which selection could be examined. The fish were allowed to breed in experimental arenas where we could quantify components of breeding success as well as estimate overall breeding success. We found that without competition, natural selection acts only on female body size for increased egg production; there is no detectable selection on males for the phenotypic distribution we used. Under competition, the opportunity for selection increased sixfold among females. Natural selection favored female body size and caudal-peduncle (tail) depth. Increased body size meant increased egg production and access to nesting territories. The caudal peduncle, used in burst swimming and nest digging, influenced both successful egg deposition and nest survival. Increasing density increased competition among females, though it did not significantly intensify natural selection on their characters. In males, competition increased the opportunity for selection 52-fold, which was nine times greater than for females. Sexual selection favored male body size and hooked snout length, both characters directly influencing male access to spawning opportunities. Selection on male body size was also affected significantly by breeding density. The ability of large males to control access to spawning females decreased at higher densities reflecting an increase in the operational sex ratio. Further, the relative success of small males, which could sneak access to spawning females, appeared to increase as that of intermediate-sized males decreased. Such disruptive selection may be responsible for the evolution of alternative reproductive tactics in salmon.  相似文献   

14.
Many animal species exhibit size dimorphism between sexes. Sexual selection, whereby male–male competition favors larger body sizes, has been considered a likely cause of sexual size dimorphism. Habitat features in breeding areas could affect the outcome of male–male competition, yet few attempts have been made to relate breeding habitat features with interpopulation variation in sexual size dimorphism. In this study, we examined interpopulation variation in sexual size dimorphism by studying the landlocked amago salmon (Oncorhynchus masou ishikawae) at a microgeographic scale. We found that female body size was independent of stream size but that male body size decreased with smaller stream sizes. A likely explanation is that the relationship between reproductive success and the size of males is influenced by the availability of refuges that are only available to small-bodied males. Sexual differences in body size increased with decreasing stream sizes, supporting the hypothesis that the reproductive success of larger males is reduced in smaller streams. In contrast, the maturation-length threshold increased with stream size for both sexes. The stream-size-based interpopulation variation in sexual size dimorphism and size at maturity in landlocked amago salmon may therefore have arisen through a combination of sexual and natural selection.  相似文献   

15.
Males are predicted to compete for reproductive opportunities, with sexual selection driving the evolution of large body size and weaponry through the advantage they confer for access to females. Few studies have explored potential trade-offs of investment in secondary sexual traits between different components of fitness or tested for sexually antagonistic selection pressures. These factors may provide explanations for observed polymorphisms in both form and quality of secondary sexual traits. We report here an analysis of selection on horn phenotype in a feral population of Soay sheep (Ovis aries) on the island of Hirta, St. Kilda, Scotland. Soay sheep display a phenotypic polymorphism for horn type with males growing either normal or reduced (scurred) horns, and females growing either normal, scurred, or no (polled) horns; further variation in size exists within horn morphs. We show that horn phenotype and the size of the trait displayed is subject to different selection pressures in males and females, generating sexually antagonistic selection. Furthermore, there was evidence of a trade-off between breeding success and longevity in normal-horned males, with both the normal horn type and larger horn size being associated with greater annual breeding success but reduced longevity. Therefore, selection through lifetime breeding success was not found to act upon horn phenotype in males. In females, a negative association of annual breeding success within the normal-horned phenotype did not result in a significant difference in lifetime fitness when compared to scurred individuals, as no significant difference in longevity was found. However, increased horn size within this group was negatively associated with breeding success and longevity. Females without horns (polled) suffered reduced longevity and thus reduced lifetime breeding success relative the other horn morphs. Our results therefore suggest that trade-offs between different components of fitness and antagonistic selection between the sexes may maintain genetic variation for secondary sexual traits within a population.  相似文献   

16.
Sexual selection against viable, fertile hybrids may contribute to reproductive isolation between recently diverged species. If so, then sexual selection may be implicated in the speciation process. Laboratory measures of the mating success of hybrids may underestimate the amount of sexual selection against them if selection pressures are habitat specific. Male F1 hybrids between sympatric benthic and limnetic sticklebacks (Gasterosteus aculeatus complex) do not suffer a mating disadvantage when tested in the laboratory. However, in the wild males choose different microhabitats and parental females tend to be found in the same habitats as conspecific males. This sets up the opportunity for sexual selection against male hybrids because they must compete with parental males for access to parental females. To test for sexual selection against adult F1 hybrid males, we examined their mating success in enclosures in their preferred habitat (open, unvegetated substrate) where limnetic males and females also predominate. We found significantly reduced mating success in F1 hybrid males compared with limnetic males. Thus, sexual selection, like other mechanisms of postzygotic isolation between young sister species, may be stronger in a wild setting than in the laboratory because of habitat-specific selection pressures. Our results are consistent with, but do not confirm, a role for sexual selection in stickleback speciation.  相似文献   

17.
Lindén  M.  Påhlson  C.  & Nilsson  J. 《Journal of fish biology》2003,63(S1):252-253
The aberrant stickleback in the Karlskrona archipelago is probably a completely new form within the three‐spined stickleback Gasterosteus aculeatus complex. Males of this type differ from sympatric, normal stickleback males by being smaller and by having less striking nuptial coloration. They also build nests in algae above the bottom, whereas normal stickleback males build their nest at the bottom. Moreover, observations suggest that aberrant stickleback males have emancipated from most of the care of nest and offspring as they appear to transport fertilized eggs from the nest to the surroundings where they are left unattended. Whether this can be explained by sex‐specific reproductive strategies or by any other means is investigated. Preliminary results suggest the aberrant stickleback to be genetically distinct from regular morphs. The project will investigate this further and hopefully clarify whether the aberrant type has evolved in the Karlskrona archipelago, thus probably in sympatry with normal sticklebacks, or if it is of allopatric origin. With reproductively important morphological and behavioural deviations, our first guess would be that isolation is mediated through sexual selection. If this is true, isolation may have been relatively rapid making a sympatric origin less unlikely. The aberrant form is very rare and endangered. Presently, it is only found at two sites, both of which are threatened by an impending ferry terminal construction. A major aim of the project is to help preserve the aberrant stickleback. Most importantly, aberrants will be collected for captive breeding and introduction to new localities.  相似文献   

18.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

19.
Little is known about the importance of trade-offs between ageing and other life history traits, or the effects of ageing on sexual selection, particularly in wild populations suffering high extrinsic mortality rates. Life history theory suggests that trade-offs between reproduction and somatic maintenance may constrain individuals with higher initial reproductive rates to deteriorate more rapidly, resulting in reduced sexual selection strength. However, this trade-off may be masked by increased condition dependence of reproductive effort in older individuals. We tested for this trade-off in males in a wild population of antler flies (Protopiophila litigata). High mating rate was associated with reduced longevity, as a result of increased short-term mortality risk or accelerated ageing in traits affecting viability. In contrast, large body size was associated with accelerated ageing in traits affecting mating success, resulting in reduced sexual selection for large body size. Thus, ageing can affect sexual selection and evolution in wild populations.  相似文献   

20.
Whether sexual selection increases or decreases fitness is under ongoing debate. Sexual selection operates before and after mating. Yet, the effects of each episode of selection on individual reproductive success remain largely unexplored. We ask how disentangled pre- and post-copulatory sexual selection contribute to fitness of field crickets Gryllus bimaculatus. Treatments allowed exclusively for (i) pre-copulatory selection, with males fighting and courting one female, and the resulting pair breeding monogamously, (ii) post-copulatory selection, with females mating consecutively to multiple males and (iii) relaxed selection, with enforced pair monogamy. While standardizing the number of matings, we estimated a number of fitness traits across treatments and show that females experiencing sexual selection were more likely to reproduce, their offspring hatched sooner, developed faster and had higher body mass at adulthood, but females suffered survival costs. Interestingly, we found no differences in fitness of females or their offspring from pre- and post-copulatory sexual selection treatments. Our findings highlight the potential for sexual selection in enhancing indirect female fitness while concurrently imposing direct survival costs. By potentially outweighing these costs, increased offspring quality could lead to beneficial population-level consequences of sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号