首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in GTP-cyclohydrolase I (GTP-CH) have been identified as causing a range of inborn errors of metabolism, including dopa-responsive dystonia. GTP-CH catalyses the first step in the biosynthesis of tetrahydrobiopterin (BH4), a cofactor necessary for the synthesis of catecholamines and serotonin. Current therapy based on monoamine neurotransmitter replacement may be only partially successful in correcting the neurological deficits. The reason might be that BH4 is also a cofactor for nitric oxide synthase. Using a strain of mutant GTP-CH-deficient (hph-1) mice, we demonstrate that in addition to impaired monoamine metabolism, BH4 deficiency is also associated with diminished nitric oxide synthesis in the brain (as evaluated by measuring the levels of cyclic GMP), when compared with wild-type animals. We have found a decline in the levels of BH4 with age in all animals, but no gender-related differences. We found a strong association between the levels of BH4 and cyclic GMP in hph-1 mice but not in wild-type animals. We also demonstrate that acute peripheral administration of BH4 (100 micromol/kg s.c.) in hph-1 mice significantly elevated the brain BH4 concentration and subsequently cyclic GMP levels in cerebellum, with peaks at 2 and 3 h, respectively. We suggest that BH4 administration should be considered in BH4 deficiency states in addition to monoamine replacement therapy.  相似文献   

2.
Several studies have already demonstrated that oxidized- LDL decreases nitric oxide (NO) generation by cytokine-stimulated macrophages. However, the mechanisms of such an inhibition have not been yet elucidated. NO generation by inducible nitric oxide synthase (iNOS) is dependent on the presence of cofactors for NO generation, tetrathydrobiopterin (BH4) among them. The NO generation by these cells is also regulated by some endogenous inhibitors, like TGF-beta. Therefore, the aim of our recent study was to investigate the influence of ox-LDL on the expression of iNOS and GTP cyclohydrolase I (GTP-CH I), the key enzyme involved in the BH4 synthesis as well as the ox-LDL effect on TGF-beta expression in rat macrophages stimulated with IFNgamma (250 U/ml) and LPS (500 ng/ml). Macrophages, activated in this way, express iNOS, GTP-CH I, and TGF-beta mRNA. This expression was inhibited when the macrophages were preincubated for 24 hours with ox-LDL (100 microg/ml). Quantitative PCR revealed about 10-fold inhibition of iNOS gene expression by ox-LDL. As a consequence of down-regulation of iNOS and GTP-CH I genes, almost 3-fold diminished generation of NO2- by rat macrophages was observed. An inhibition of the TGFbeta mRNA expression was also found. Our studies indicate that decreased NO generation by ox-LDL treated macrophages may be the result of the diminished expression of both iNOS and GTP-CH I genes. This effect may be mediated by the activity of certain endogenous inhibitors of gene expression, however, our studies exclude the TGF-beta as a candidate for this activity.  相似文献   

3.
The contents of hexoses and hexosamines in brain, liver, and kidney of streptozotocin diabetic mice are significantly increased in comparison to the controls. These differences for hexoses contents in the heart are not significant. N-acetyl-beta-D-glucosaminidase and beta-D-glucosidase activities in brain, liver and kidney of diabetic mice are significantly higher when compared to the controls. However, beta-D-galactosidase activity is significantly lower in brain, liver, spleen and kidney of the diabetic mice, in comparison to the controls and similar in heart. alpha-D-Mannosidase activity of diabetic mice is significantly increased in spleen and heart and significantly decreased in liver and kidney. alpha-L-Fucosidase of diabetic mice shows higher activities, with significant differences, in liver and spleen; however, in heart and kidney the activities are significantly lower. Brain sialyltransferase and galactosyltransferase activities are significantly increased in diabetic mice; but for heart and kidney these differences are not significant. The activity for brain and kidney fucosyltransferase is not significant and that for the other assayed organs is significantly higher in comparison to the controls.  相似文献   

4.
Nitric oxide (NO), synthesized from l-arginine by NO synthase (NOS), is a key regulator of placental angiogenesis and growth during pregnancy. However, little is known about placental NO synthesis associated with ovine conceptus development. This study was conducted to test the hypothesis that placental NO synthesis is greatest during early gestation. Columbia cross-bred ewes were hysterectomized on Days 30, 40, 60, 80, 100, 120, or 140 of gestation (n = 4 per day) to obtain placentomes, intercotyledonary placenta, and intercaruncular endometrium. Tissues were analyzed for constitutive NOS (cNOS) and inducible NOS (iNOS) activities, NO synthesis, tetrahydrobiopterin (BH4) and NADPH (essential cofactors for NOS), and GTP-cyclohydrolase I (GTP-CH, a rate-controlling enzyme in de novo synthesis of BH4) activity using radiochemical and chromatographic methods. Marked changes in NO synthesis, cNOS and iNOS activities, GTP-CH activity, and concentrations of BH4 and NADPH occurred in all placental and endometrial tissues between Days 30 and 140 of gestation. NO synthesis peaked on Day 60 of gestation in both intercotyledonary placenta and placentomes and on Days 40-60 in intercaruncular endometrium. NO synthesis in placentomes increased 100% between Days 80 and 100 of gestation, when placental and uterine blood flows increase continuously. In all placental and endometrial tissues, NO synthesis was positively correlated with total NOS activity, GTP-CH activity, and concentrations of BH4 and NADPH. Importantly, these results indicate a high degree of metabolic coordination among the several integrated pathways that support high rates of NO synthesis in the conceptus and uterus and establish a new base of information for future studies to define the roles of NO in fetal-placental growth and development.  相似文献   

5.
To study the role of the redox state regulator glutathione (GSH) in bacterial lipopolysaccharide (LPS)-induced anorexia we measured total reduced GSH (trGSH) in liver, serum and brain in response to intraperitoneal (ip) lipopolysaccharide (LPS, 4 microg/mouse) injection in LPS-na?ve and LPS-pretreated (4 microg/mouse given 3 days earlier) mice. LPS reduced food intake in LPS-na?ve mice and LPS pretreatment attenuated this effect. LPS decreased trGSH at 24 hours after injection in LPS-na?ve mice but 4 days later trGSH levels were upregulated in brain and liver, and this was associated with a significant attenuation of LPS-induced anorexia. In addition, LPS increased mitochondrial GSH levels in brain and liver at 4 days after injection. Pharmacological GSH depletion with diethylmaleate and L-buthionine sulfoximine in LPS-pretreated mice ablated the hyposensitivity to the anorexic effect of LPS. Together, these findings suggest a prominent role for GSH and its intracellular repartition in LPS anorexia.  相似文献   

6.
The activity of two copper-dependent enzymes, cytochrome c oxidase and copper, zinc-superoxide dismutase, was determined in six tissues of age-matched (13-day-old) copper-deficient mutant and normal mice. In the two mutants 'brindled' and 'blotchy', brain, heart and skeletal muscle had significant enzyme deficiencies. Cytochrome c oxidase was more severely affected than was superoxide dismutase. In these three tissues the degree of deficiency could be correlated with decreased copper concentration; however, enzyme activity was normal in liver, kidney and lung, despite abnormal copper concentrations in these tissues. In nutritionally copper-deficient mice, all six tissues showed decreased enzyme activity, which was most marked in brain, heart and skeletal muscle, the tissues which showed enzyme deficiencies in the mutants. Analysis in vitro of cytochrome c oxidase (temperature coefficient = 2) at a single temperature was found to underestimate the deficiency of this enzyme in hypothermic copper-deficient animals. Cytochrome c oxidase deficiency may therefore be sufficiently severe in vivo to account for the clinical manifestations of copper deficiency. An injection of copper (50 micrograms of Cu+) at 7 days increased cytochrome c oxidase activity by 13 days in all deficient tissues of brindled mice, and in brain and heart from blotchy mice. However, skeletal-muscle cytochrome c oxidase in blotchy mutants did not respond to copper injection. Cytochrome c oxidase activity increased to normal in all tissues of nutritionally copper-deficient mice after copper injection, except in the liver. Hepatic enzyme activity remained severely deficient despite a liver copper concentration three times that found in copper-replete controls. Superoxide dismutase activity did not increase with treatment in either mutant, but its activity was higher than control levels in nutritionally deficient mice after injection. This difference is probably due to sequestration of copper in mutant tissue such as kidney, but a defect in the copper transport pathway to superoxide dismutase cannot be excluded.  相似文献   

7.
Individual gene-targeted hpn and hpn-like mutants and a mutant with mutations in both hpn genes were more sensitive to nickel, cobalt, and cadmium toxicity than was the parent strain, with the hpn-like strain showing the most metal sensitivity of the two individual His-rich protein mutants. The mutant strains contained up to eightfold more urease activity than the parent under nickel-deficient conditions, and the parent strain was able to achieve mutant strain activity levels by nickel supplementation. The mutants contained 3- to 4-fold more and the double mutant about 10-fold more Ni associated with their total urease pools, even though all of the strains expressed similar levels of total urease protein. Hydrogenase activities in the mutants were like those in the parent strain; thus, hydrogenase is fully activated under nickel-deficient conditions. The histidine-rich proteins appear to compete with the Ni-dependent urease maturation machinery under low-nickel conditions. Upon lowering the pH of the growth medium from 7.3 to 5, the wild-type urease activity increased threefold, but the activity in the three mutant strains was relatively unaffected. This pH effect was attributed to a nickel storage role for the His-rich proteins. Under low-nickel conditions, the addition of a nickel chelator did not significantly affect the urease activity of the wild type but decreased the activity of all of the mutants, supporting a role for the His-rich proteins as Ni reservoirs. These nickel reservoirs significantly impact the active urease activities achieved. The His-rich proteins play dual roles, as Ni storage and as metal detoxification proteins, depending on the exogenous nickel levels.  相似文献   

8.
We have examined the turnover of 5,6,7,8-tetrahydrobiopterin (BH4) and the effect of decreasing BH4 levels on in situ tyrosine hydroxylase (TH) activity and norepinephrine (NE) content in a homogeneous population of NE-containing neurons derived from the superior cervical ganglion (SCG) of the neonatal rat and maintained in tissue culture. Initial studies indicated that the level of BH4 within SCG cultures increased fourfold between 5 and 37 days in vitro (DIV). This increase in BH4 levels was determined to result from an increase in the rate of BH4 biosynthesis without a change in the rate of degradation. Regardless of culture age, the BH4 content of SCG neurons was observed to turn over with a half-life of approximately 2.5 h. BH4 synthesis by SCG neurons was found to be five times more sensitive to inhibition by 2,4-diamino-6-hydroxypyrimidine (DAHP) and 25 times less sensitive to inhibition by N-acetylserotonin than was previously reported for CNS neurons in culture. Under basal conditions, the rates of in situ TH activity and BH4 biosynthesis were similar. In response to inhibition of BH4 biosynthesis by DAHP and a 90-95% decrease in BH4 levels, in situ TH activity declined by 75%. NE levels declined by 30% following a 24-h period of inhibition of BH4 synthesis. After 2 days of BH4 synthesis inhibition, the level of NE was decreased by 47%. On treatment days 3 and 4, the decline in NE content plateaued at 24% of control levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
Metabolite Alterations in the Genetically Spastic Mouse   总被引:1,自引:0,他引:1  
Abstract: The concentration of soluble amino acids in the brains of homozygous spastic mice was measured. It was found that brain arginine levels were reduced by 3% and urea concentration was 50% higher in affected mice. The activity of the brain and liver enzymes for arginine synthesis were similar in spastics and in controls. However, in spastic mice the activity of brain arginase is elevated. This increased arginase activity accounts for the decreased arginine concentration in the mutant mice.  相似文献   

12.
Toxoplasma gondii can modulate host cell gene expression; however, determining gene expression levels in intermediate hosts after T. gondii infection is not known much. We selected 5 genes (ALDH1A2, BEX2, CCL3, EGR2 and PLAU) and compared the mRNA expression levels in the spleen, liver, lung and small intestine of genetically different mice infected with T. gondii. ALDH1A2 mRNA expressions of both mouse strains were markedly increased at day 1-4 postinfection (PI) and then decreased, and its expressions in the spleen and lung were significantly higher in C57BL/6 mice than those of BALB/c mice. BEX2 and CCR3 mRNA expressions of both mouse strains were significantly increased from day 7 PI and peaked at day 15-30 PI (P<0.05), especially high in the spleen liver or small intestine of C57BL/6 mice. EGR2 and PLAU mRNA expressions of both mouse strains were significantly increased after infection, especially high in the spleen and liver. However, their expression patterns were varied depending on the tissue and mouse strain. Taken together, T. gondii-susceptible C57BL/6 mice expressed higher levels of these 5 genes than did T. gondii-resistant BALB/c mice, particularly in the spleen and liver. And ALDH1A2 and PLAU expressions were increased acutely, whereas BEX2, CCL3 and EGR2 expressions were increased lately. Thus, these demonstrate that host genetic factors exert a strong impact on the expression of these 5 genes and their expression patterns were varied depending on the gene or tissue.  相似文献   

13.
To identify genes involved in DNA transformation, we generated 1500 insertion mutants of a Helicobacter pylori strain by transposon shuttle mutagenesis. All mutant strains were screened for their frequency of natural transformation. A total of 20 mutant strains were found to exhibit a significantly decreased transformation frequency. DNA sequencing revealed seven genetic loci, including the reported comB locus, HP0017 (a putative virB4 homologue) and five loci without database match (HP0015, HP1089, HP1326, HP1424, and HP1473) from the 20 mutants. Reknockout of HP1326 revealed no impairment in natural transformation, while the other 5 mutants showed the same defective in natural transformation. Mutation of HP0017 severely impaired natural transformation both chromosome and plasmid DNA. Slot blot analysis revealed that some noncompetent strains had decreased virB4 RNA expression levels compared with competent strains. Nineteen ORFs had decreased expression levels in virB4 knockout mutant by microarray. Therefore, our data indicate that HP0017 is a virB4 homologue and is essential in the natural competence of H. pylori. HP0015, HP1089, HP1424, and HP1473 genes could be also involved in natural transformation.  相似文献   

14.
The antioxidant status of several tissues (liver, kidney, lung, brain, heart, muscle, stomach, and spleen) from heterozygous manganese superoxide dismutase (MnSOD) mutant mice (Sod2-/+) was characterized. The activity of MnSOD was decreased (30 to 80%) in all tissues examined. The levels of mRNA coding for the major antioxidant enzymes (CuZnSOD, catalase, and glutathione peroxidase) were not significantly altered in liver, kidney, heart, lung, or brain in the Sod2-/+ mice. The activities of the enzymes were not altered in any of these tissues, with the exception of a decrease in glutathione peroxidase activity in muscle in the Sod2-/+ mice compared to the Sod2+/+ mice. Thus, there was no up-regulation of the activities of the major antioxidant enzymes to compensate for the decrease in MnSOD activity. Reduced glutathione levels were 30 to 50% lower in the lung, brain, and muscle of the Sod2-/+ mice compared to the wild-type Sod2+/+ mice. In addition, the ratio of GSH/GSSG was decreased approximately 50% in Sod2-/+ muscle, indicating that the decrease in MnSOD activity in the Sod2-/+ mice results in some degree of oxidative stress in this tissue.  相似文献   

15.
A neutral cysteine protease, bleomycin hydrolase (BH), was found to be present in the range 3.7-131.1 ng per mg of rat tissues by enzyme-lined immunosorbent assay (ELISA). Newborn rat skin contained the highest amount of BH, and relatively high levels of BH were detected in the kidney and liver of 6-week-old male rats. The tissue distribution of BH in female rats was similar to that in male rats. Moreover, BH was detected in the extracts of erythrocytes and leukocyte-rich cells as well as in those of rat hemo-lymphocytic lineage cell lines by Western blotting. The BH level was increased at 6 weeks after birth and then slightly decreased. By immunohistochemistry, BH was localized as granular staining in the distal and proximal tubular cells of the kidney, and it was also detected in hepatocytes of the liver, in the red pulpy region of the spleen and in neurons of the brain. An immunoelectron microscopic study showed that BH-immunoreactivity was essentially located in the cytoplasm and at the outer membrane of the rough endoplasmic reticulum of epithelial cells of the kidney, as well as in that of hepatocytes of the liver. These results suggest that BH may play ubiquitous and unique roles in rat tissues.  相似文献   

16.
家蚕墨蝶呤还原酶基因的体外表达及酶活性研究   总被引:1,自引:0,他引:1  
家蚕(Bombyx mori)黄体色突变体(lem)的幼虫体壁富含墨蝶呤(SP),SP经墨蝶呤还原酶(SPR)的催化作用合成四氢生物蝶呤(BH4)。作为芳香族氨基酸羟化酶的重要辅酶,BH4的缺乏会导致多种神经性代谢综合症。前期研究已克隆获得家蚕SPR基因(BmSpr),确定了BmSpr为lem突变体的遗传本质。本实验将重组质粒 pET-24b-BmSpr转化至 E.coli 不同菌株的感受态细胞,对 BmSpr的体外表达条件进行了优化。SDS-PAGE和Western Blot的检测结果表明BmSPR融合蛋白能够在原核表达系统中得到稳定表达,酶活性分析结果显示体外表达的重组BmSPR对其底物SP有较好的催化活性。本研究为进一步以从家蚕lem突变体资源大量提纯的SP为底物,利用原核表达BmSPR,开展体外合成 BH4的应用基础研究奠定了实验基础。  相似文献   

17.
The effects of a single and repeated electroconvulsive shock (ECS) (300 mA, 0.2 s) on tetrahydrobiopterin (BH4) levels and GTP-cyclohydrolase activity in the brain and adrenal glands of rats were examined. Twenty-four hours after the last ECS treatment (one/day for 7 days), biopterin levels were significantly elevated in the locus coeruleus, hippocampus, frontal cortex, hypothalamus, ventral tegmental area, and adrenal gland. There were no changes in biopterin levels after a single application of ECS. GTP-cyclohydrolase activity was significantly increased in the locus coeruleus, frontal cortex, hippocampus, hypothalamus, and adrenal gland 24 h after repeated ECS and remained elevated in certain tissues up to 8 days after the last treatment. Kinetic analysis of adrenal and locus coeruleus GTP-cyclohydrolase 1 day after 7 days of ECS showed significant changes in both Km and Vmax values. These data suggest that the long-term increases in BH4 levels and GTP-cyclohydrolase activity after repeated ECS may play a part in the mediation of the antidepressant effects of ECS.  相似文献   

18.
19.
Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mitochondria have been isolated from each member of the yeast coq mutant collection, from the wild-type parental strains and from respiratory deficient mutants harboring deletions in ATP2 or COR1 genes. These latter strains constitute Q-replete, respiratory deficient controls. Each of these mitochondrial preparations has been analyzed for COQ3-encoded O-methyltransferase activity and steady state levels of Coq3 polypeptide. The findings indicate that the presence of the other COQ gene products is required to observe normal levels of O-methyltransferase activity and the Coq3 polypeptide. However, COQ3 steady state RNA levels are not decreased in any of the coq mutants, relative to either wild-type or respiratory deficient control strains, suggesting either a decreased rate of translation or a decreased stability of the Coq3 polypeptide. These data are consistent with the involvement of the Coq polypeptides (or the Q-intermediates formed by the Coq polypeptides) in a multi-subunit complex. It is our hypothesis that a deficiency in any one of the COQ gene products results in a defective complex in which the Coq3 polypeptide is rendered unstable.  相似文献   

20.
1. Adult Mongolian gerbils (Meriones unguiculatus) were acclimated to 5 +/- 1, 24 +/- 1 and 34 +/- 1 degrees C for 6-8 weeks. 2. Body weights of temperature acclimated gerbils did not differ significantly from controls. Organ wt/body wt ratios of liver, kidney and heart increased in cold-acclimated and decreased in heat-acclimated gerbils. Adrenal wt/body wt ratio increased in the cold and was unchanged in the heat. Relative weights of brain, spleen, lungs, brown fat and ovaries + uterus did not change with temperature acclimation. 3. Cold acclimation produced significant increases in specific and total activity of brown fat alpha GPO and liver SO and AAO and in total activity of kidney SO; a significant decrease in liver mitochondrial ADP/O ratio with succinate as substrate; and no change in brown fat SO or liver alpha KGO. 4. Heat acclimation produced significant decreases in specific and total activity of liver and kidney SO, and in total activity of brown fat SO and alpha GPO, and liver AAO and alpha KGO. 5. The combined biochemical and organ wt changes seen in temperature-acclimated gerbils suggest that this species is capable of altering its metabolic thermogenic potential in response to a wide range of ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号