首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) is a 130-kDa transmembrane glycoprotein that is expressed on the surfaces of platelets, endothelial cells, and certain leukocyte subsets. The extracellular region of PECAM-1 contains six immunoglobulin homology domains, two of which (domains 1 and 2) mediate PECAM-1 homophilic interactions. Recent evidence suggests that a major function of the extracellular region of PECAM-1 is to determine its localization within the plane of the plasma membrane. The cytoplasmic domain of PECAM-1 contains an immunoreceptor tyrosine-based inhibitory motif that, upon tyrosine phosphorylation, supports recruitment of the Src homology 2 domain-containing protein tyrosine phosphatase, SHP-2. However, neither the targets of this PECAM-1/SHP-2 complex nor the significance of localizing SHP-2 to the borders of opposing PECAM-1-expressing cells is yet known. As a first step in addressing these issues, we designed a cDNA encoding a chimeric protein composed of the PECAM-1 extracellular domain fused to the phosphatase domain of SHP-2, which we call PECAM-1/PhD2. When immunopurified from stably transfected HEK293 cell lines expressing this recombinant protein, PECAM-1/PhD2 was found to possess constitutive enzymatic activity and appropriate border localization. This constitutively active chimeric protein will be useful in future studies designed to define the components of signal transduction pathways modulated by PECAM-1/SHP-2 signaling complexes.  相似文献   

2.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

3.
Protein tyrosine phosphorylation has been implicated in the growth and functional responses of hematopoietic cells. Recently, approaches have been developed to characterize the protein tyrosine phosphatases that may contribute to regulation of protein tyrosine phosphorylation. One novel protein tyrosine phosphatase was expressed predominantly in hematopoietic cells. Hematopoietic cell phosphatase encodes a 68-kDa protein that contains a single phosphatase conserved domain. Unlike other known protein tyrosine phosphatases, hematopoietic cell phosphatase contains two src homology 2 domains. We also cloned the human homolog, which has 95% amino acid sequence identity. Both the murine and human gene products have tyrosine-specific phosphatase activity, and both are expressed predominantly in hematopoietic cells. Importantly, the human gene maps to chromosome 12 region p12-p13. This region is associated with rearrangements in approximately 10% of cases of acute lymphocytic leukemia in children.  相似文献   

4.
Although CD45 resembles the low Mr protein tyrosine phosphatases (PTPases) from human placenta in its specificity for phosphotyrosyl residues and absolute dependence on sulfhydryl compounds for activity, it also exhibits a number of distinguishing features. Most notably, it displayed substrate specificity in vitro, preferentially dephosphorylating myelin basic protein, over the other substrates tested, with high specific activity. Limited trypsinization of CD45 generated active fragments of approximately 65 kDa that were apparently derived exclusively from the intracellular segment of the molecule. These retained high activity against myelin basic protein, suggesting that this is an intrinsic feature of the PTPase domains and not the result of secondary interactions between the substrate and the putative ligand binding structure. With reduced carboxamidomethylated and maleylated lysozyme as substrate, CD45 was stimulated up to 12-fold by basic compounds such as spermine; divalent metal ions were also stimulatory, most notably Zn2+, which was previously identified as a potent inhibitor of the low Mr PTPases. CD45 was phosphorylated to high stoichiometry by casein kinase-2 (up to 1.5 mol/mol) and also by glycogen synthase kinase 3 (approximately 0.3 mol/mol) and protein kinase C (approximately 0.1 mol/mol); in all cases, no alteration in enzyme activity was detected following these modifications. Autophosphorylated preparations of epidermal growth factor receptor, insulin receptor, and p56lck protein tyrosine kinases were also substrates for CD45 in vitro.  相似文献   

5.
M Streuli  N X Krueger  T Thai  M Tang    H Saito 《The EMBO journal》1990,9(8):2399-2407
Protein tyrosine phosphorylation is regulated by both protein tyrosine kinases and protein tyrosine phosphatases (PTPases). Recently, the structures of a family of PTPases have been described. In order to study the structure-function relationships of receptor-linked PTPases, we analyzed the effects of deletion and point mutations within the cytoplasmic region of the receptor-linked PTPases, LCA and LAR. We show that the first of the two domains has enzyme activity by itself, and that one cysteine residue in the first domain of both LCA and LAR is absolutely required for activity. The second PTPase like domains do not have detectable catalytic activity using a variety of substrates, but sequences within the second domains influence substrate specificity. The functional significance of a stretch of 10 highly conserved amino acid residues surrounding the critical cysteine residue located in the first domain of LAR was assessed. At most positions, any substitution severely reduced enzyme activity, while missense mutations at the other positions tested could be tolerated to varying degrees depending on the amino acid substitution. It is suggested that this stretch of amino acids may be part of the catalytic center of PTPases.  相似文献   

6.
7.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

8.
为了分离纯化SHP-1/SHP-2催化活性域蛋白(分别命名为D1C/D2C), 并估测其动力学常数, 将已经构建好的D1C/D2C重组质粒转化Escherichia coli BL21菌株, 经IPTG诱导表达、菌体裂解缓冲液悬浮和超声波破碎后, 通过HPLC分离纯化D1C/D2C蛋白, 所得产物进行SDS-PAGE电泳检测。然后, 以pY作为去磷酸化反应的底物, 利用孔雀绿显色法, 通过双倒数作图法对纯化的D1C/D2C蛋白进行动力学分析。结果表明, 本试验已成功地表达了D1C和D2C蛋白, 主要以可溶性蛋白的形式表达; 利用HPLC技术可有效地对D1C/D2C蛋白进行分离纯化; D1C的相对分子质量为34.6 kD, 米氏常数Km=2.04 mmol/L, 催化常数Kcat=44.98 s, 特异性常数Kcat/Km=22.05 L/(mmol·s); D2C的相对分子质量为35.3 kD, 米氏常数Km=2.47 mmol/L, 催化常数Kcat=27.45 s, 特异性常数Kcat/Km=11.11 L/(mmol·s); D1C的磷酸酶活性较强于D2C。  相似文献   

9.
An unnatural amino acid was synthesized to incorporate a quinone methide-generating activity-based probe for protein tyrosine phosphatases (PTPs) and then integrated into a PTP1B-specific substrate. The resulting probe led to preferential labeling of PTP1B in cell lysates in the presence of PTP4A3.  相似文献   

10.
Receptor-like protein tyrosine phosphatases generally contain one or two conserved intracellular catalytic domains with a conserved sequence motif ([I/V]HCXAGXXR[S/T]G), a single transmembrane domain, and an external highly variable part. Here, we describe cloning of the intracellular catalytic domain of the rat protein tyrosine phosphatase eta (rPTPetaCD) into pET28a(+) vector, its expression in Escherichia coli, purification and initial characterization. The purification of His6-tagged rPTPetaCD to near homogeneity was achieved by a combination of affinity and size exclusion chromatography. The His-tag was subsequently removed by thrombin digestion. PhastGel IEF electrophoresis demonstrated that the isoelectric point of this 41 kDa His6-tag free recombinant protein was 7.3, which is just slightly higher than the theoretically predicted value of 7.2. To assess the functionality of the rPTPetaCD we used the pNPP hydrolysis assay and observed that the enzyme has a specific activity of 9 nmol/min/mug. The secondary structure and stability of the recombinant protein was also analyzed by circular dichroism and fluorescence spectroscopy. In summary, the rPTPetaCD is stable at 18 degrees C, properly folded, and fully active, which makes it a suitable candidate for structural and functional studies.  相似文献   

11.
R Y Li  F Gaits  A Ragab  J M Ragab-Thomas    H Chap 《The EMBO journal》1995,14(11):2519-2526
SH-PTP1 is a protein tyrosine phosphatase (PTP) predominantly expressed in haematopoietic cells and containing two src homology-2 (SH2) domains. Here we report that SH-PTP1 is phosphorylated on both serine and tyrosine residues in response to thrombin or phorbol myristate acetate (PMA), which increased by 60 and 40%, respectively, SH-PTP1 activity. Thrombin-induced phosphorylation of SH-PTP1 is an early signalling event (maximal within 10 s) involving neither integrin signalling, nor calcium, nor release of ADP or thromboxane A2. Moreover, in contrast with PMA, the effect of thrombin on the tyrosine phosphorylation of SH-PTP1 was hardly affected by GF109203X, a specific protein kinase C (PKC) inhibitor. Finally, phosphorylation of SH-PTP1 could be provoked in permeabilized platelets by thrombin or GTP gamma S. This was abolished by pertussis toxin, the specificity of this effect being verified with the megakaryocytic cell line Dami cell. Our data thus identify SH-PTP1 as an in vivo substrate of a putative protein tyrosine kinase linked to the thrombin receptor by a Gi protein. This might offer some clue to unravel the mechanism of thrombin not only in platelets but also in nucleated cells, where its mitogenic effect is known to involve pertussis toxin-sensitive G-proteins, tyrosine phosphorylation and the ras pathway.  相似文献   

12.
De Souza D  Fabri LJ  Nash A  Hilton DJ  Nicola NA  Baca M 《Biochemistry》2002,41(29):9229-9236
Suppressor of cytokine signaling-3 (SOCS-3) and the protein tyrosine phosphatase SHP-2 both regulate signaling by cytokines of the interleukin-6 family, and this is dependent upon recruitment to tyrosine 757 in the shared cytokine receptor subunit gp130. To better explore the overlap in ligand binding specificities exhibited by these two signaling regulators, we have mapped the phosphopeptide binding preferences of the SH2 domains from SOCS-3 and SHP-2. Degenerate phosphopeptide libraries were screened against recombinantly produced SH2 domains to determine the sequences of optimal phosphopeptide ligands. We found that the consensus ligand binding motif for SOCS-3 was pY-(S/A/V/Y/F)-hydrophobic-(V/I/L)-hydrophobic-(H/V/I/Y), while the consensus motif for SHP-2 was pY-(S/T/A/V/I)-X-(V/I/L)-X-(W/F). We validated these data through the design of phosphopeptide ligands based on the consensus motifs and found that these bound to SOCS-3 and SHP-2 with high affinity. Finally, we have compared the affinity of SOCS-3 for binding to phosphopeptides representing putative docking sites in the gp130, leptin and erythropoietin receptors. While SOCS-3 binds with much higher affinity to a gp130 phosphopeptide than to phosphopeptides derived from the other receptors, multiple SOCS-3 binding sites are predicted to exist in the leptin and erythropoietin receptors which may compensate for weaker binding to individual sites.  相似文献   

13.
The PTP-2 cDNA encoding an intracellular protein tyrosine phosphatase (PTPase-2) was isolated and sequenced from mouse testis and T-cell cDNA libraries. This PTP-2 cDNA was found to be homologous to human PTP-TC and rat PTP-S, and contained 1,551 nucleotides, including 1,146 nucleotides encoding 382 amino acids as well as 5 (61 nucleotides) and 3 (344 nucleotides) non-coding regions. Northern blot analysis indicated that PTP-2 mRNA of 1.9 Kb was most abundant in testis and kidney, although it was also present in spleen, muscle, liver, heart and brain.Abbreviations PTPase Protein Tyrosine Phosphatase (EC3.1.3.48) - PTKase Protein Tyrosine Kinase (EC2.7.1.112)  相似文献   

14.
Linear and cyclic phosphopeptides related to the pY2267 binding site of the epithelial receptor tyrosine kinase Ros have been synthesized as ligands for the amino-terminal SH2 (src homology) domain of protein tyrosine phosphatase SHP-1. The synthesis was accomplished by Fmoc-based solid-phase methodology using side-chain unprotected phosphotyrosine for the linear and mono-benzyl protected phosphotyrosine for the cyclic peptides. According to molecular modelling, the incorporation of a glycine residue between Lys (position pY-1 relative to phosphotyrosine) and Asp or Glu (position pY+2) was recommended for the cyclic candidates. The preparation of these peptides was successfully performed by the incorporation of a Fmoc-Xxx(Gly-OAll)-OH (Xxx = Asp, Glu) dipeptide building block that was prepared in solution prior to SPPS. The cyclization was achieved with PyBOP following Alloc/OAll-deprotection. This study demonstrates the usefulness of allyl-type protecting groups for the generation of side-chain cyclized phosphopeptides. Alloc/OAll-deprotection and cyclization are compatible with phosphorylated tyrosine.  相似文献   

15.
beta-Dystroglycan is a ubiquitously expressed integral membrane protein that undergoes tyrosine phosphorylation in an adhesion-dependent manner. However, it remains unknown whether tyrosine-phosphorylated beta-dystroglycan interacts with SH2 domain containing proteins. Here, we show that the tyrosine phosphorylation of beta-dystroglycan is constitutively elevated in v-Src transformed cells. We next reconstituted this phosphorylation event in vivo by transiently coexpressing wild-type c-Src with a fusion protein containing full-length beta-dystroglycan. Our results demonstrate that Src-induced tyrosine phosphorylation of beta-dystroglycan is strictly dependent on the presence of a PPxY motif at its extreme C-terminus. In the nonphosphorylated state, this PPxY motif is normally recognized as a ligand by the WW domain; phosphorylation at this site blocks the binding of certain WW domain containing proteins. Using a GST fusion protein carrying the cytoplasmic tail of beta-dystroglycan, we identified five SH2 domain containing proteins that interact with beta-dystroglycan in a phosphorylation-dependent manner, including c-Src, Fyn, Csk, NCK, and SHC. We localized this binding activity to the PPxY motif by employing a panel of beta-dystroglycan-derived phosphopeptides. In addition, tyrosine phosphorylation of beta-dystroglycan in vivo resulted in the coimmunoprecipitation of the same SH2 domain containing proteins, and this binding event required the beta-dystroglycan C-terminal PPxY motif. We discuss the possibility that tyrosine phosphorylation of the PPxY motif within beta-dystroglycan may act as a regulatory switch to inhibit the binding of certain WW domain containing proteins, while recruiting SH2 domain containing proteins.  相似文献   

16.
Sonnenburg ED  Bilwes A  Hunter T  Noel JP 《Biochemistry》2003,42(26):7904-7914
The receptor protein tyrosine phosphatase alpha (RPTPalpha) is a transmembrane receptor with two intracellular protein tyrosine phosphatase domains, a catalytically active membrane proximal domain (D1) and a membrane distal phosphatase domain with minimal catalytic activity (D2). Here we elucidate the crystal structure of RPTPalpha's D2 domain. Unlike D1, D2 exists as a monomer and lacks the N-terminal inhibitory wedge motif. The N-terminal portion of D2 is disordered, and this region linking D1 to D2 is proteolytically labile in solution whether part of D2 alone or tethered to D1, indicating that the polypeptide backbone of this part of D2 is highly flexible, and therefore accessible to proteases under native conditions. Furthermore, we have crystallized the SH2 domain of the protein tyrosine kinase c-Src, a RPTPalpha substrate, with a phosphopeptide encompassing the C-terminal phosphorylation site of D2 (pTyr789). The SH2 domain of Src binds RPTPalpha in an extended conformation. The structural and functional data support a D1-D2 arrangement with significant flexibility between phosphatase domains of RPTPalpha that is likely to be important for dynamic alterations in intra- and/or intermolecular interactions that are critical for RPTPalpha function.  相似文献   

17.
Src homology 2-containing phosphotyrosine phosphatase (Shp2) functions as a positive effector in receptor tyrosine kinase (RTK) signaling immediately proximal to activated receptors. However, neither its physiological substrate(s) nor its mechanism of action in RTK signaling has been defined. In this study, we demonstrate that Sprouty (Spry) is a possible target of Shp2. Spry acts as a conserved inhibitor of RTK signaling, and tyrosine phosphorylation of Spry is indispensable for its inhibitory activity. Shp2 was able to dephosphorylate fibroblast growth factor receptor-induced phosphotyrosines on Spry both in vivo and in vitro. Shp2-mediated dephosphorylation of Spry resulted in dissociation of Spry from Grb2. Furthermore, Shp2 could reverse the inhibitory effect of Spry on FGF-induced neurite outgrowth and MAP kinase activation. These findings suggest that Shp2 acts as a positive regulator in RTK signaling by dephosphorylating and inactivating Spry.  相似文献   

18.
Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling.  相似文献   

19.
SHP-1 is a cytosolic tyrosine phosphatase implicated in down-regulation of B cell antigen receptor signaling. SHP-1 effects on the antigen receptor reflect its capacity to dephosphorylate this receptor as well as several inhibitory comodulators. In view of our observation that antigen receptor-induced CD19 tyrosine phosphorylation is constitutively increased in B cells from SHP-l-deficient motheaten mice, we investigated the possibility that CD19, a positive modulator of antigen receptor signaling, represents another substrate for SHP-1. However, analysis of CD19 coimmunoprecipitable tyrosine phosphatase activity in CD19 immunoprecipitates from SHP-1-deficient and wild-type B cells revealed that SHP-1 accounts for only a minor portion of CD19-associated tyrosine phosphatase activity. As CD19 tyrosine phosphorylation is modulated by the Lyn protein-tyrosine kinase, Lyn activity was evaluated in wild-type and motheaten B cells. The results revealed both Lyn as well as CD19-associated Lyn kinase activity to be constitutively and inducibly increased in SHP-1-deficient compared with wild-type B cells. The data also demonstrated SHP-1 to be associated with Lyn in stimulated but not in resting B cells and indicated this interaction to be mediated via Lyn binding to the SHP-1 N-terminal SH2 domain. These findings, together with cyanogen bromide cleavage data revealing that SHP-1 dephosphorylates the Lyn autophosphorylation site, identify Lyn deactivation/dephosphorylation as a likely mechanism whereby SHP-1 exerts its influence on CD19 tyrosine phosphorylation and, by extension, its inhibitory effect on B cell antigen receptor signaling.  相似文献   

20.

Background

Sustained agonist-promoted ubiquitination of β-arrestin has been correlated with increased stability of the GPCR – β-arrestin complex. Moreover, abrogation of β-arrestin ubiquitination has been reported to inhibit receptor internalization with minimal effects on receptor degradation.

Results

Herein we report that agonist activation of M1 mAChRs produces a sustained β-arrestin ubiquitination but no stable co-localization with β-arrestin. In contrast, sustained ubiquitination of β-arrestin by activation of M2 mAChRs does result in stable co-localization between the M2 mAChR and β-arrestin. Internalization of receptors was unaffected by proteasome inhibitors, but down-regulation was significantly reduced, suggesting a role for the ubiquitination machinery in promoting down-regulation of the receptors. Given the ubiquitination status of β-arrestin following agonist treatment, we sought to determine the effects of β-arrestin ubiquitination on M1 and M2 mAChR down-regulation. A constitutively ubiquitinated β-arrestin 2 chimera in which ubiquitin is fused to the C-terminus of β-arrestin 2 (YFP-β-arrestin 2-Ub) significantly increased agonist-promoted down-regulation of both M1 and M2 mAChRs, with the effect substantially higher on the M2 mAChR. Based on this observation, we were interested in examining the effects of disruption of potential ubiquitination sites in the β-arrestin sequence on receptor down-regulation. Agonist-promoted internalization of the M2 mAChR was not affected by expression of β-arrestin lysine mutants lacking putative ubiquitination sites, β-arrestin 2K18R, K107R, K108R, K207R, K296R, while down-regulation and stable co-localiztion of the receptor with this β-arrestin lysine mutant were significantly reduced. Interestingly, expression of β-arrestin 2K18R, K107R, K108R, K207R, K296R increased the agonist-promoted down-regulation of the M1 mAChR but did not result in a stable co-localiztion of the receptor with this β-arrestin lysine mutant.

Conclusion

These findings indicate that ubiquitination of β-arrestin has a distinct role in the differential trafficking and degradation of M1 and M2 mAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号