共查询到9条相似文献,搜索用时 4 毫秒
1.
Bhat SH Azmi AS Hanif S Hadi SM 《The international journal of biochemistry & cell biology》2006,38(12):2074-2081
Several decades back ascorbic acid was proposed as an effective anticancer agent. However, this idea remained controversial and the mechanism of action unclear. In this paper, we show that ascorbic acid at a concentration reported to be achievable through high doses of oral consumption is capable of cytotoxic action against normal cells. Several antioxidants of both animal as well as plant origin including ascorbic acid also possess prooxidant properties. Copper is an essential component of chromatin and can take part in redox reactions. Previously we have proposed a mechanism for the cytotoxic action of plant antioxidants against cancer cells that involves mobilization of endogenous copper ions and the consequent generation of reactive oxygen species. Using human peripheral lymphocytes and Comet assay we show here that ascorbic acid is able to cause oxidatative DNA breakage in normal cells at a concentration of 100–200 μM. Neocuproine, a Cu(I) specific sequestering agent inhibited DNA breakage in a dose dependent manner indicating that Cu(I) is an intermediate in the DNA cleavage reaction. The results are in support of our above hypothesis that involves events that lead to a prooxidant action by antioxidants. The results would support the idea that even a plasma concentration of around 200 μM would be sufficient to cause pharmacological tumor cell death particularly when copper levels are elevated. This would account for the observation of several decades back by Pauling and co-workers where oral doses of ascorbic acid in gram quantities were found to be effective in treating some cancers. 相似文献
2.
Uzma Shamim Sarmad Hanif M. F. Ullah Asfar S. Azmi Showket H. Bhat 《Free radical research》2013,47(8):764-772
It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage. 相似文献
3.
It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage. 相似文献
4.
Resveratrol (3,4',5-trihydroxy stilbene), a plant derived polyphenol found in mulberries, grapes and red wine is considered to possess chemopreventive properties against cancer. It is recognized as a naturally occurring antioxidant but also catalyzes oxidative DNA degradation in vitro in the presence of transition metal ions such as copper. Using a cellular system of lymphocytes isolated from human peripheral blood and Comet assay, we have confirmed that resveratrol-Cu(II) system is indeed capable of causing DNA degradation in cells such as lymphocytes. Also, trans-stilbene, which does not have any hydroxyl groups, is inactive in the lymphocyte system. Pre-incubation of lymphocytes with resveratrol indicates that it is capable of either traversing the cell membrane or binding to it. Our results are in partial support of our hypothesis that anticancer properties of various plant derived polyphenols may involve mobilization of endogenous copper and the consequent prooxidant action. 相似文献
5.
H Zubair H Y Khan A Sohail S Azim M F Ullah A Ahmad F H Sarkar S M Hadi 《Cell death & disease》2013,4(6):e660
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their chemopreventive and cancer therapeutic abilities in animal models. Thymoquinone (TQ) is the major bioactive constituent of volatile oil of Nigella sativa and has been shown to exert various pharmacological properties, such as anti-inflammatory, cardiovascular, analgesic, anti-neoplastic, anticancer and chemopreventive. Although several mechanisms have been suggested for the chemopreventive and anticancer activity of TQ, a clear mechanism of action of TQ has not been elucidated. TQ is a known antioxidant at lower concentrations and most of the studies elucidating the mechanism have centered on the antioxidant property. However, recent publications have shown that TQ may act as a prooxidant at higher concentrations. It is well known that plant-derived antioxidants can switch to prooxidants even at low concentrations in the presence of transition metal ions such as copper. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Copper is an important metal ion present in the chromatin and is closely associated with DNA bases, particularly guanine. Using human peripheral lymphocytes and comet assay, we first show that TQ is able to cause oxidative cellular DNA breakage. Such a DNA breakage can be inhibited by copper-chelating agents, neocuproine and bathocuproine, and scavengers of reactive oxygen species. Further, it is seen that TQ targets cellular copper in prostate cancer cell lines leading to a prooxidant cell death. We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of plant-derived antioxidants. 相似文献
6.
DNA sensitivity in peripheral blood leukocytes of radar-facility workers daily exposed to microwave radiation and an unexposed
control subjects was investigated. The study was carried out on clinically healthy male workers employed on radar equipment
and antenna system service within a microwave field of 10 μW/cm2–20 mW/cm2 with frequency range of 1,250–1,350 MHz. The control group consisted of subjects of similar age. The evaluation of DNA damage
and sensitivity was performed using alkaline comet assay and chromatid breakage assay (bleomycin-sensitivity assay). The levels
of DNA damage in exposed subjects determined by alkaline comet assay were increased compared to control group and showed inter-individual
variations. After short exposure of cultured lymphocytes to bleomycin cells of subjects occupationally exposed to microwave
(MW) radiation responded with high numbers of chromatid breaks. Almost three times higher number of bleomycin-induced chromatid
breaks in cultured peripheral blood lymphocytes were determined in comparison with control group. The difference in break
per cell (b/c) values recorded between smokers and non-smokers was statistically significant in the exposed group. Regression analyses
showed significant positive correlation between the results obtained with two different methods. Considering the correlation
coefficients, the number of metaphase with breaks was a better predictor of the comet assay parameters compared to b/c ratio. The best correlation was found between tail moment and number of chromatid with breaks. Our results indicate that
MW radiation represents a potential DNA-damaging hazard using the alkaline comet assay and chromatid breakage assay as sensitive
biomarkers of individual cancer susceptibility. 相似文献
7.
The interaction of a quercetin copper(II) complex with DNA was investigated using UV–vis spectra, fluorescence measurement,
viscosity measurement, agarose gel electrophoresis, and thiobarbituric acid reactive substances assay. The results indicate
that the quercetin copper(II) complex can promote the cleavage of plasmid DNA, producing single and double DNA strand breaks,
and intercalate into the stacked base pairs of DNA. Moreover, the complex can induce oxidative DNA damage involving generation
of reactive oxygen species such as H2O2 and Cu(I)OOH. In addition, the cytotoxicity experiments carried out with A549 cells confirmed its apoptosis-inducing activity.
And we also demonstrate that the levels of survivin protein expression in A549 cells decreased, and that relative activity
of caspase-3 increased significantly after treatment with the complex. So our results suggest that the antitumor mechanism
of the quercetin copper(II) complex involves not only its oxidative DNA damage with generation of reactive oxygen species
but also its specific interaction with DNA.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
8.
Ramesh C. Chaubey Hari N. Bhilwade Rema Rajagopalan Sanjay V. Bannur 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2001,490(2)
The studies reported in this communication had two major objectives: first to validate the in-house developed SCGE-Pro: a software developed for automated image analysis and data processing for Comet assay using human peripheral blood leucocytes exposed to radiation doses, viz. 2, 4 and 8 Gy, which are known to produce DNA/chromosome damage using alkaline Comet assay. The second objective was to investigate the effect of gamma radiation on DNA damage in mouse peripheral blood leucocytes using identical doses and experimental conditions, e.g. lyses, electrophoretic conditions and duration of electrophoresis which are known to affect tail moment (TM) and tail length (TL) of comets. Human and mouse whole blood samples were irradiated with different doses of gamma rays, e.g. 2, 4 and 8 Gy at a dose rate of 0.668 Gy/min between 0 and 4°C in air. After lyses, cells were electrophorased under alkaline conditions at pH 13, washed and stained with propidium iodide. Images of the cells were acquired and analyzed using in-house developed imaging software, SCGE-Pro, for Comet assay. For each comet, total fluorescence, tail fluorescence and tail length were measured. Increase in TM and TL was considered as the criteria of DNA damage. Analysis of data revealed heterogeneity in the response of leucocytes to gamma ray induced DNA damage both in human as well as in mouse. A wide variation in TM and TL was observed in control and irradiated groups of all the three donors. Data were analyzed for statistical significance using one-way ANOVA. Though a small variation in basal level of TM and TL was observed amongst human and mouse controls, the differences were not statistically significant. A dose-dependent increase in TM (P<0.001) and TL (P<0.001) was obtained at all the radiation doses (2–8 Gy) both in human and mouse leucocytes. However, there was a difference in the nature of dose response curves for human and mouse leucocytes. In human leucocytes, a linear increase in TM and TL was observed up to the highest radiation dose of 8 Gy. However, in case of mouse leucocytes, a sharp increase in TM and TL was observed only up to 4 Gy, and there after saturation ensued. In human samples, the dose response of both TM and TL showed best fits with linear model (rTM=0.999 and rTL=0.999), where as in mouse, the best fit was obtained with Sigmoid (Boltzman) model. From the present data on leucocytes with increase in TM and TL as the criteria of DNA damage, it appears that mouse is relatively more sensitive to radiation damage than humans. 相似文献
9.
We developed a simple and rapid method to study chromosome aberrations involving specific chromosomes using unstimulated human peripheral blood lymphocytes (HPBL). Premature chromosome condensation (PCC) was induced by incubating unstimulated HPBL in the presence of okadaic acid (OA, a phosphatase inhibitor), adenosine triphosphate (ATP), and p34(cdc2)/cyclin B kinase [an essential component of mitosis-promoting factor (MPF)], which eliminated the need for fusion with mitotic cells. OA concentration and duration of incubation for PCC induction was optimized using mitogen-stimulated HPBL; a final concentration of 0.75 microM incubated for 3 h was optimum, resulting in approximately 20% PCC yield. In unstimulated HPBL, PCC was induced by the addition of p34(cdc2)/cyclin B kinase at concentrations as low as 5 units/ml to a cell culture medium containing OA. Increases in the concentration of p34(cdc2)/cyclin B kinase from 5 to 50 units/ml resulted in a concentration-dependent increase in PCC yield (30% to 42%). We demonstrate that this technique of inducing PCC in unstimulated HPBL is suitable for studying radiation-induced aberrations involving a specific chromosome (chromosome 1) after 24 h repair using a whole-chromosome in situ hybridization probe and chromosome painting. Cells with aberrant chromosome number 1 are characterized with more than two chromosome spots. The frequency of cells with aberrant chromosome 1 increased with 60Co gamma-radiation doses in the region 0-7.5 Gy. The observed dose-effect relationship for the percentage of cells with aberrant chromosome 1 (Y) was explained by using both a linear [Y=(2.77+/-0.230)D+0.90+/-0.431, r(2)=0.966] and a nonlinear power [Y=(5.70+/-0.46)D((0.61+/-0.05)), r(2)=0.9901) model. This technique can be applied to biological dosimetry of radiation exposures involving uniform whole-body low linear energy transfer (LET) exposures. 相似文献