首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion to form a chimera has been documented in many marine invertebrate taxa, including poriferans, cnidarians, bryozoans, and colonial ascidians. Allogenic interactions in chimeric ascidian colonies vary widely across taxonomic groups but are poorly characterized in the invasive colonial ascidian Didemnum vexillum. The moderate level of discrimination expressed in the fusion–rejection response of D. vexillum suggests that there is some integration of cells beyond the fusion line in a chimeric colony. We tracked the shifts in representation of microsatellite alleles between fused colonies of D. vexillum to elucidate the extent of genotypic integration in fused colonies and the patterns of changes to the genotypic composition of colonies immediately following chimera formation. By genotyping colonies before and after fusion, we found that allogeneic fusion in D. vexillum may lead to genotypic changes beyond the visible fusion line. Alleles from one colony were found in multiple tissue samples in the chimera 7–10 days after fusion had occurred. In some instances, alleles that were in a single colony prior to fusion were lost following fusion. We observed multiple patterns of allelic change, including both the unidirectional transfer and reciprocal exchange of alleles between fused colonies. Our findings suggest that tissue or cells are exchanged following allogeneic fusion between colonies of D. vexillum and that the genotypic composition of chimeric colonies may be fluid.  相似文献   

2.
Many empirical analyses of life-history tactics are based on the assumption that demographic variation ought to be greatest among populations or species living in different environments. However, in a single population of the sessile colonial sea squirt Botryllus schlosseri, there are two discrete life-history morphs. Semelparous colonies are characterized by a) death immediately following the production of a single clutch, b) early age at first reproduction, c) rapid growth to first reproduction, and d) high reproductive effort. In contrast, iteroparous colonies a) produce at least three clutches before dying, b) postpone sexual reproduction until they are nearly twice the age of semelparous colonies, c) grow at about half the rate of semelparous colonies, and d) invest roughly 75% less in reproductive effort than semelparous colonies. Semelparous colonies numerically dominate the population through midsummer; later in the summer, iteroparous colonies are most numerous. Field and laboratory common-garden experiments, along with breeding studies, indicate that the demographic differences between the morphs are genetically determined. Consequently, the seasonal switch from dominance by semelparous colonies to dominance by iteroparous colonies may be an evolved response to a seasonally changing environment. On theoretical grounds, temporal variation in selection is thought to play a relatively unimportant role in maintaining genetic polymorphism; nonetheless, the seasonally recurrent life-history polymorphism shown in this study indicates that temporal variation in selection can lead to the maintenance of genetic polymorphism for traits strongly affecting fitness.  相似文献   

3.
Grafting experiments with newly settled larvae and with adult colonies of Pocillopora damicornis were performed. When pairs of newly settled larvae released from different colonies were kept in contact, they fused to form an aggregated colony. Even newly settled larvae derived from colonies belonging to different color morphs fused with each other and no sign of allogeneic rejection was observed. However, when branches of adult colonies belonging to different color morphs were kept in contact, they did not fuse. Fusion was observed only when branches derived from the same colony were paired. The present results suggest that juvenile corals lack the functional histocompatibility system as shown by adult colonies.  相似文献   

4.
Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae.  相似文献   

5.
Empirical evidence has shown that stressful conditions experienced during development may exert long-term negative effects on life-history traits. Although it has been suggested that oxidative stress has long-term effects, little is known about delayed consequences of oxidative stress experienced early in life in fitness-related traits. Here, we tested whether oxidative stress during development has long-term effects on a life-history trait directly related to fitness in three colonies of European shags Phalacrocorax aristotelis. Our results revealed that recruitment probability decreased with oxidative damage during the nestling period; oxidative damage, in turn, was related to the level of antioxidant capacity. Our results suggest a link between oxidative stress during development and survival to adulthood, a key element of population dynamics.  相似文献   

6.
In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.  相似文献   

7.
8.
The colonial ascidian Aplidium yamazii exhibited an allorejection reaction when two allogeneic colonies were brought into contact at their growing edges or at artificial cut surfaces. This species has no vascular network in the tunic, unlike the botryllid ascidians, which have a vascular network throughout the colony's common tunic. In the allorejection reaction induced by contact at the growing edges, some small, hard-packed tunic masses were formed at the contact points. Histological and electron microscopic investigation of these tunic masses revealed that they contained aggregates of tunic cells, with tunic phagocytes being the major cell type present. Some of the tunic phagocytes in these tunic masses appeared to be disintegrating. When allogeneic colonies were placed in contact at their artificial cut surfaces, the colonies partially fused, then separated. In this allorejection reaction, some loosely packed tunic masses remained in the gap between the two withdrawn colonies. These results strongly suggest that the tunic phagocytes are likely to be the major effector cells in the allorejection reaction. We also propose that the tunic phagocytes are not only the effector cells in the allorejection reaction but also bear the sites of allorecognition.  相似文献   

9.
Nearly all colonial marine invertebrates are capable of allorecognition--the ability to distinguish between self and genetically distinct members of the same species. When two or more colonies grow into contact, they either reject each other and compete for the contested space or fuse and form a single, chimeric colony. The specificity of this response is conferred by genetic systems that restrict fusion to self and close kin. Two selective pressures, intraspecific spatial competition between whole colonies and competition between stem cells for access to the germline in fused chimeras, are thought to drive the evolution of extensive polymorphism at invertebrate allorecognition loci. After decades of study, genes controlling allorecognition have been identified in two model systems, the protochordate Botryllus schlosseri and the cnidarian Hydractinia symbiolongicarpus. In both species, allorecognition specificity is determined by highly polymorphic cell-surface molecules, encoded by the fuhc and fester genes in Botryllus, and by the alr1 and alr2 genes in Hydractinia. Here we review allorecognition phenomena in both systems, summarizing recent molecular advances, comparing and contrasting the life history traits that shape the evolution of these distinct allorecognition systems, and highlighting questions that remain open in the field.  相似文献   

10.
The current study tests the hypothesis that life-history traits (closely related to fitness) show greater inbreeding depression than morphological traits (less closely related to fitness). The mean and median slope of the standardized coefficient of inbreeding depression (the slope of the linear relationship between F and the trait value) for life-history and morphological traits were compared. Slopes for life-history traits were higher than those for morphological traits. At F = 0.25 (full-sibling mating), life-history traits experienced a median reduction of 11.8% in trait value, whereas morphological traits showed a depression in trait value of approximately 2.2%.  相似文献   

11.
Life-history traits such as longevity and fecundity often show low heritability. This is usually interpreted in terms of Fisher's fundamental theorem to mean that populations are near evolutionary equilibrium and genetic variance in total fitness is low. We develop the causal relationship between metric traits and life-history traits to show that a life-history trait is expected to have a low heritability whether or not the population is at equilibrium. This is because it is subject to all the environmental variation in the metric traits that affect it plus additional environmental variation. There is no simple prediction regarding levels of additive genetic variance in life-history traits, which may be high at equilibrium. Several other patterns in the inheritance of life-history traits are readily predicted from the causal model. These include the strength of genetic correlations between life-history traits, levels of nonadditive genetic variance, and the inevitability of genotype-environment interaction.  相似文献   

12.
A central paradigm of life-history theory is the existence of resource mediated trade-offs among different traits that contribute to fitness, yet observations inconsistent with this tenet are not uncommon. We previously found a clonal population of the aphid Myzus persicae to exhibit positive genetic correlations among major components of fitness, resulting in strong heritable fitness differences on a common host. This raises the question of how this genetic variation is maintained. One hypothesis states that variation for resource acquisition on different hosts may override variation for allocation, predicting strong fitness differences within hosts as a rule, but changes in fitness hierarchies across hosts due to trade-offs. Therefore, we carried out a life-table experiment with 17 clones of M. persicae, reared on three unrelated host plants: radish, common lambsquarters and black nightshade. We estimated the broad-sense heritabilities of six life-history traits on each host, the genetic correlations among traits within hosts, and the genetic correlations among traits on different hosts (cross-environment genetic correlations). The three plants represented radically different environments with strong effects on performance of M. persicae, yet we detected little evidence for trade-offs. Fitness components were positively correlated within hosts but also between the two more benign hosts (radish and lambsquarters), as well as between those and another host tested earlier. The comparison with the most stressful host, nightshade, was hampered by low survival. Survival on nightshade also exhibited genetic variation but was unrelated to fitness on other hosts. Acknowledging that the number of environments was necessarily limited in a quantitative genetic experiment, we suggest that the rather consistent fitness hierarchies across very different plants provided little evidence to support the idea that the clonal variation for life-history traits and their covariance structure are maintained by strong genotypexenvironment interactions with respect to hosts. Alternative explanations are discussed.  相似文献   

13.
 Newly settled larvae (primary polyps) or young colonies of the coral Pocillopora damicornis were brought into contact at various periods after planulation to examine isogeneic and allogeneic responses. While young colonies derived from the same colony always fused, those derived from different colonies showed either fusion, nonfusion, or incompatible fusion. Tissues were continuous in incompatibly fused pairs, but a white zone, without zooxanthellae, was observed at the interface. The skeleton was also continuous but a groove with skeletal spines on both sides was observed under the white zone. Polyps originating near the white zone later disappeared or were partially resorbed. After 2–8 months, several incompatibly fused pairs became separated by a skeletal ridge, or by a narrow zone of skeleton without living tissue. Incompatible fusion appears to be a distinct histoincompatible response which later transforms into nonfusion. The period between planulation and initial contact of colonies did not affect the outcomes of the contact experiments. Accepted: 31 January 1996  相似文献   

14.
On the evolution of clonal plant life histories   总被引:2,自引:0,他引:2  
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and non-clonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be particularly interesting if it is done in the field.  相似文献   

15.
Saito Y 《Zoological science》2003,20(5):581-589
Xenogeneic rejection was observed among colonies of three botryllids, Botryllus scalaris, Botryllus primigenus, and Botrylloides simodensis. Allogeneic recognition occurs in each of these species, but the manner of allogeneic rejection differs among them. We studied xenogeneic rejection reactions among these species under the following conditions: colony contact at natural growing edges, colony contact at artificially cut surfaces, and injection of xenogeneic blood plasma into a vascular vessel. In the first two cases, xenogeneic rejection occurred only in Botryllus primigenus and Botrylloides simodensis. The features of that xenogeneic rejection were similar to those of allogeneic rejection in each of these two botryllids. Injection of xenogeneic blood plasma induced responses similar to those of allogeneic rejection in all three botryllids. It is interesting to note that colonies of Botryllus scalaris never showed any response against injected blood plasma from allogeneic incompatible colonies, unlike the responses seen in colonies of the other two botryllids under the same conditions. On the basis of these results, the relationship between allogeneic and xenogeneic rejection in botryllids is discussed.  相似文献   

16.
To determine the evolutionary importance of parental environmental effects in natural populations, we must begin to measure the magnitude of these effects in the field. For this reason, we conducted a combined growth chamber-field experiment to measure parental temperature effects in Plantago lanceolata. We grew in the field offspring of controlled crosses of chamber-grown parents subjected to six temperature treatments. Each treatment was characterized by a unique combination of maternal prezygotic (prior to fertilization), paternal prezygotic, and postzygotic (during fertilization and seed set) temperatures. Offspring were followed for three years to measure the effects of treatment on several life-history traits and population growth rate, our estimate of fitness. Parental treatment influenced germination, growth, and reproduction of newborns, but not survival or reproduction of offspring at least one year old. High postzygotic temperature significantly increased germination and leaf area at 17 weeks by approximately 35% and 2%, respectively. Probability of flowering and spike production in the newborn age class showed significant parental genotype x parental treatment interactions. High postzygotic temperature increased offspring fitness by approximately 50%. The strongest contributors to fitness were germination and probability of flowering and spike production of newborns. A comparison of our data with previously collected data for chambergrown offspring shows that the influence of parental environment on offspring phenotype is weaker but still biologically meaningful in the field. The results provide evidence that parental environment influences offspring fitness in natural populations of P. lanceolata and does so by affecting the life-history traits most strongly contributing to fitness. The data suggest that from the perspective of offspring fitness, natural selection favors parents that flower later in the flowering season in the North Carolina Piedmont when it is warmer. Genotypic-specific differences in response of offspring reproductive traits to parental environment suggest that parental environmental effects can influence the rate of evolutionary change in P. lanceolata.  相似文献   

17.
Trade-offs among life-history traits are central to evolutionary theory. In quantitative genetic terms, trade-offs may be manifested as negative genetic covariances relative to the direction of selection on phenotypic traits. Although the expression and selection of ecologically important phenotypic variation are fundamentally multivariate phenomena, the in situ quantification of genetic covariances is challenging. Even for life-history traits, where well-developed theory exists with which to relate phenotypic variation to fitness variation, little evidence exists from in situ studies that negative genetic covariances are an important aspect of the genetic architecture of life-history traits. In fact, the majority of reported estimates of genetic covariances among life-history traits are positive. Here we apply theory of the genetics and selection of life histories in organisms with complex life cycles to provide a framework for quantifying the contribution of multivariate genetically based relationships among traits to evolutionary constraint. We use a Bayesian framework to link pedigree-based inference of the genetic basis of variation in life-history traits to evolutionary demography theory regarding how life histories are selected. Our results suggest that genetic covariances may be acting to constrain the evolution of female life-history traits in a wild population of red deer Cervus elaphus: genetic covariances are estimated to reduce the rate of adaptation by about 40%, relative to predicted evolutionary change in the absence of genetic covariances. Furthermore, multivariate phenotypic (rather than genetic) relationships among female life-history traits do not reveal this constraint.  相似文献   

18.
Ecological immunology: life history trade-offs and immune defense in birds   总被引:22,自引:2,他引:20  
There has been considerable recent interest in the effects oflife-history decisions on immunocompetence in birds. If immunocompetenceis limited by available resources, then trade-offs between investmentin life-history components and investment in immunocompetencecould be important in determining optimal life-history traits.For this to be true: (1) immunocompetence must be limited byresources, (2) investment in life-history components must benegatively correlated with immunocompetence, and (3) immunocompetencemust be positively correlated with fitness. To gather such empiricaldata, ecologists need to be able to measure immunocompetence.We review techniques used to measure immunocompetence and howthey are applied by ecologists. We also consider the componentsof the immune system that constitute immunocompetence and evaluatethe possible consequences of measuring immunocompetence in differentways. We then review the empirical evidence for life-historytrade-offs involving immune defense. We conclude that thereis some evidence suggesting that immunocompetence is limitedby resources and that investment in certain life-history componentsreduces immunocompetence. However, the evidence that immunocompetenceis related to fitness is circumstantial at present, althoughconsistent with the hypothesis that immunocompetence and fitnessare positively correlated. We argue that future work needs toexamine the fitness effects of variation in immunocompetenceand suggest that artificial selection experiments offer a potentiallyimportant tool for addressing this issue.  相似文献   

19.
The extent to which heterozygosity-fitness correlations (HFCs) are expected in wild populations is an important and unresolved question in evolutionary biology, because it relates to our understanding of the genetic architecture of fitness. Here, we report a study of HFCs in a wild, noninbred population of great tits (Parus major), based on a sample comprising 281 individuals typed at 26 markers, resulting in a data set comprising over 5600 genotypes. We regressed pedigree-derived f-score and multilocus genetic diversity against eight life-history traits known to be associated with fitness in this population, including lifetime reproductive success (LRS), as well as several morphological traits under weak selection. We found no evidence for either multilocus or single-locus HFCs for any morphological or fitness trait, and further found no evidence that effect sizes were stronger for those life-history traits more closely associated with reproductive fitness. This result may, in part, be explained by the fact that we found no evidence that our set of 26 markers had any power to infer genome-wide heterozygosity in this population and that marker-derived heterozygosity was uncorrelated with pedigree-derived f-score. Overall, these results emphasize the fact that the often-reported strong HFCs detected in small, inbred populations do not reflect a general phenomenon of increasing individual reproductive fitness with increasing heterozygosity.  相似文献   

20.
The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号