首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatoma Tissue Culture (HTC) cell nuclei were isolated from untreated cells and from cells treated with sodium butyrate to increase the levels of acetylated histone. Nuclei from sodium butyrate treated cells exhibited a dramatic increased rate of digestion with DNase I as compared to control cell nuclei. Micrococcal nuclease showed no preference for chromatin containing hyperacetylated histones.  相似文献   

2.
We have obtained a number of variant HTC cells which are capable of vigorous replication in the presence of 6 mM sodium butyrate. These cells show characteristic changes in histone acetylation. H2A/H2B are no longer modified and the turnover of histones H3/H4 acetate is about 4-fold greater than in control HTC cells at the same butyrate concentration. Histone deposition continues successfully even though histones H3/H4 become hyperacetylated upon association with the chromatin. Prompt deacetylation of new histones does not appear to be a prerequisite for successful deposition processes. Initial enzymatic studies indicate that not only do the butyrate-resistant cells show an increased deacetylase activity (on a per cell basis), but also the enzyme is less sensitive to sodium butyrate under in vitro assay conditions. In contrast to control HTC cells in 6 mM butyrate in which dexamethasone induction of tyrosine aminotransferase is inhibited, the butyrate-resistant variant cells are capable of tyrosine aminotransferase induction even in the presence of butyrate. The implications of these observations are discussed.  相似文献   

3.
In addition to its known effect in suppressing the deacetylation of the nucleosomal core histones, sodium butyrate in the concentration range 0.5 to 15 mM causes a selective inhibition of [32P]phosphate incorporation into histones H1 and H2A of cultured HeLa S3 cells. No commensurate general inhibition of phosphorylation is seen in the non-histone nuclear proteins of butyrate-treated cells, but phosphorylation patterns are altered and 32P-uptake may be stimulated, as well as inhibited, depending upon the protein fraction analyzed. The degree of inhibition of histone phosphorylation in intact cells increases progressively as the butyrate concentration is raised from 0.5 to 15 mM. The effect is time-dependent and fully reversible. Butyrate has no effect on the kinetics of phosphate release from previously phosphorylated histones of cultured cells, nor does it significantly alter the rate of dephosphorylation of 32P-labeled histone H1 by endogenous phosphatases in vitro. Despite the suppression of [32P]phosphate incorporation into histones H1 and H2A of butyrate-treated cells, Na-butyrate does not inhibit the in vitro activities of either type I or type II cyclic AMP-dependent protein kinases, or the cAMP-independent H1 kinase associated with cell cycle progression. This suggests that the butyrate effect on histone phosphorylation in vivo is indirect and may involve an alteration in substrate accessibility or a modulation of systems affecting kinase activities. The poly(ADP)-ribosylation of HeLa histones is not inhibited by 5 mM Na-butyrate. Cells exposed to butyrate show an impaired methylation of lysine and arginine residues in their histones and nuclear hnRNP particles, respectively.  相似文献   

4.
In order to explore the relationship between unacetylated arginine-rich histones and condensed chromatin structure, the extent of histone acetylation was examined in cultured cell lines derived from three species of deer mice. These species differ considerably in their genomic content of heterochromatin but contain essentially the same euchromatin content. Cells of Peromyscus eremicus, containing 34–36% more constitutive heterochromatin than Peromyscus boylii or Peromyscus crinitus cells were found to contain 28–35% more unacetylated histone H4, 22–29% more unacetylated histone H3, and 18–22% more unacetylated histone H2B. This relationship between unacetylated histones and heterochromatin content was further explored by inducing hyperacetylation of P. eremicus and P. boylii histones through treatment of cells with 15 mM sodium butyrate for 24 h. It was found that the percentages of unacetylated histones H3 and H4 remaining after butyrate treatment were proportional to the amount of constitutive heterochromatin in the genome. These data support the concept that a small core of histones in constitutive heterochromatin is inaccessible to acetylation. It was also found that the acetylated state of isolated histones was sensitive to the method of histone extraction. Thus concern must be given to preparative procedures when studying histone acetylation in order to minimize these acetate losses.  相似文献   

5.
Suppression of histone deacetylation in vivo and in vitro by sodium butyrate   总被引:14,自引:0,他引:14  
In HeLa cells which have been exposed to 5 mM sodium butyrate for 21 h, the level of histone acetylation is greatly increased as compared to control cells (Riggs, M.G., Whittaker, R.G., Neumann, J.R., and Ingram, V.R. (1977) Nature 268, 462-464). Our experiments indicate that the increase in the relative amounts of multiacetylated forms of histones H4 and H3 following butyrate treatment is the result of an inhibition of histone deacetylase activity.  相似文献   

6.
AIM. This study was designed to examine whether the class I and class IIa histone deacetylase (HDAC) inhibitors, sodium butyrate and sodium valproate alter the expression of human NCOR1 and/or NCOR2 genes coding for N-CoR (nuclear receptor corepressor) and SMRT (silencing mediator for retinoid and thyroid hormone receptors), respectively. METHODS: Human leukemia HL-60 cells were treated for 24 h with 0.5 and 1 mM sodium butyrate, 1 to 3 mM sodium valproate, 1 mcM all-trans retinoic acid (ATRA) or cotreated with 1 mcM ATRA and 0.5 mM sodium butyrate. The acetylation of histones H3 and H4 was analysed by western blotting. The levels of NCOR1 and NCOR2 mRNA were determined by quantitative real-time PCR. Expression of NCF2 gene coding for the NADPH oxidase subunit p67phox was evaluated as a marker of myeloid differentiation. Results. Both butyrate and valproate increased the acetylation of histone H3 at Lys9 and/or Lys14 as well as histone H4 at Lys12. Both HDAC inhibitors caused a significant increase in NCF2 mRNA levels without affecting NCOR1 or NCOR2 mRNA levels. Similarly, ATRA alone or in combination with butyrate induced NCF2 gene expression without any significant influence on the expression of NCOR1 or NCOR2 genes. CONCLUSION: We conclude that inhibitors of class I and class IIa HDACs do not alter the expression of human NCOR1 or NCOR2 genes and that the onset of myeloid differentiation is not accompanied by induction or repression of these genes in HL-60 cells.  相似文献   

7.
We have studied the effect of butyrate and other short-chain fatty acids on thyroid hormone nuclear receptors in C6 cells, a rat glioma cell line. Exposure of C6 cells to butyrate leads to increased levels of L-triiodothyronine (T3) in the nuclear and extranuclear compartments. The rise in nuclear binding is not merely a reflection of the higher cellular hormone content, and Scatchard analysis of T3 binding to isolated nuclei reveals that butyrate increases receptor number without changing affinity. The effect on the receptor is quantitatively important: a 48-h incubation with 2 mM butyrate increases nuclear binding by 2-3-fold, and 5 mM butyrate by 3-5-fold. Other short-chain fatty acids were found to similarly influence both nuclear receptor and extranuclear T3 levels with the following potency: butyrate greater than valerate greater than propionate greater than acetate. On the contrary, ketone bodies were ineffective. Butyrate increases receptor levels by decreasing receptor degradation, since the apparent t1/2 of receptor disappearance increased by approximately 3-fold in cells incubated with 2 mM butyrate for 48 h. The regulation of receptor number might be secondary to an action of butyrate on regions of the chromatin to which the receptor associates. We then examined the effect of butyrate on histone acetylation. The fatty acid had little effect in increasing the level of multiacetylated forms of H3 and H4 histone when studied in acid-urea gels, but it markedly inhibited the turnover of [3H] acetate from the histone fraction. There was a striking similarity in the dose-response of butyrate for increasing receptor levels and inhibiting histone deacetylation. Furthermore, a very close correlation between receptor levels and [3H]acetate release was also found when different short-chain fatty acids were used. We thus conclude that the effect of butyrate on the receptor could be explained by a modification of the chromatin structure of C6 cells secondary to acetylation.  相似文献   

8.
The effect of sodium butyrate on the nuclear proteins of two Chinese hamster cell lines (V79 and CHO) was studied. Butyrate treatment induces hyperacetylation of core histones in both cell lines, while H1 histone shows a different behavior. In CHO cells H1 is dephosphorylated following butyrate incubation; V79 do not show any change of H1 subtypes. It seems that H1 response to butyrate treatment is cell type dependent. Using silver staining a group of proteins that could be present in vivo in the nucleo-protein complex was also detected.  相似文献   

9.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

10.
Histone deacetylases of Ehrlich ascites tumor cells are active at low temperatures (0-4 degrees C). The so-called hyperacetylated state of histones is the physiological state of histones in intact Ehrlich ascites tumor cells which is conserved by the continuous presence of 10 mM sodium butyrate during the preparation of nuclei and histones. Isolation of histones in the absence of butyrate causes an artificial decrease in histone acetylation. This artificial loss of histone acetylation produces a decrease of the elongation reaction in the RNA synthesis. The initiation of RNA synthesis is not affected.  相似文献   

11.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

12.
A 60 minute exposure of chicken immature erythrocytes to n-butyrate shifts actively acetylated and deacetylated histones to hypermodified forms. Micrococcal nuclease digestion of nuclei from n-butyrate treated cells and subsequent fractionation of the chromatin releases 40-45% of the adult beta-globin (beta A) nucleohistone into a soluble fraction. This is an eleven fold enrichment over the soluble chromatin from untreated cells (Ferenz and Nelson (1985) Nucleic Acids Res. 13, 1977-1995). The enhanced beta A chromatin solubility and induced histone hyperacetylation are coincident. Removal of n-butyrate from the cell incubation medium allows rapid histone deacetylation and a striking reduction in beta A chromatin solubility. Chromatin from cells incubated in the absence of n-butyrate, or in medium containing 10 mM NaCl or 2% dimethylsulfoxide, does not exhibit histone hyperacetylation, or the acquired solubility of beta A chromatin. We show that the H4 histone co-isolated with the beta A DNA is in a hyperacetylated state and present evidence that the n-butyrate incubation increases the solubility of both coding and noncoding chromatin regions in the beta-globin domain.  相似文献   

13.
It has been previously shown that micrococcal nuclease digestion and subsequent fractionation of hen oviduct nuclei generates fractions enriched (first supernatant fraction - 1SF) and depleted (second supernatant fraction - 2SF) in ovalbumin genes, while a third fraction, the pellet fraction, contains about the same level of this gene as whole chromatin (Bloom and Anderson (1978) Cell 15, 141-150). We have utilized this fractionation method in an attempt to assess the extent and kinetics of histone acetylation associated with chromatin from the 1SF, 2SF, and pellet fraction. Hepatoma Tissue Culture (HTC) cells were labelled for 30 minutes in vivo with 3H-acetate, nuclei isolated and the chromatin fractionated. The specific activity of the histones in the 1SF was slightly greater than that of the 2SF (1.2 to 1.6 fold difference) independent of the length of nuclease digestion. If the labelling period is followed by short (10 to 60 minute) treatment of the cells with sodium butyrate, the more rapidly as well as more extensively acetylated histones are also preferentially found in the 1SF. This is in part the result of segregation of chromatin particles into the 1SF as the histones associated with these particles become hyperacetylated. That is, the extent of histone acetylation regulates the distribution of chromatin in the 1SF, 2SF and pellet fraction.  相似文献   

14.
Structure of chromatin containing extensively acetylated H3 and H4   总被引:39,自引:0,他引:39  
R T Simpson 《Cell》1978,13(4):691-699
I have grown HeLa cells in 5 mM sodium n-butyrate leading to extensive in vivo histone acetylation, and have characterized the structure of chromatin containing the modified histones. Nuclear DNA in butyrate-treated cells is digested 5-10 fold more rapidly by DNAase I than the DNA of control cells. Staphylococcal nuclease degrades the two nuclear samples to acid-soluble material with identical rates; this nuclease, however, does excise nucleosomes with extensively acetylated histones from the nucleoprotein chain preferentially. The physical properties of unsheared chromatin and isolated core particles from control and butyrate-treated cells are closely similar, as are the rates of digestion of core particles from the two cell preparations by DNAase I. Determination of the relative susceptibilities of cleavage sites for DNAase I demonstrates that the site 60 bases from the ends of the DNA resistant in control cells, becomes susceptible to the nuclease in core particles containing acetylated histones. Similarly, the 5' terminal phosphate at the end of DNA in core prticles is removed by staphylococcal nuclease 2-3 fold faster in particles containing acetylated histones than in particles from control cells.  相似文献   

15.
Dynamic histone acetylation of alfalfa (Medicago sativa) was studied in suspension cultures by short-term labeling with radioactive acetate. The relative labeling rates for the acetylated histones were in order of decreasing incorporation; H3.2 greater than H3.1 greater than H4 greater than H2B.1 greater than H2A.3. Histone H3 showed at least seven sites of acetylation, histone H2B.1 had six sites and histone H4 had five sites. Low numbers of acetylation sites were observed for histone H2B.2 and all histone H2A variants. The mass ratio, steady state acetylation and dynamic acetylation between major variant H3.1 and minor variant H3.2 were approx. 2:1, 1:2 and 2:5, respectively. Treatment of alfalfa cells with 50 mM n-butyrate did not lead to histone hyperacetylation, but instead interfered with histone acetylation labeling by acetate. The extent of apparent inhibition increased with time and concentration of butyrate. It is likely that the conversion of butyrate to acetylCoA results in dilution of the specific radioactivity of [3H]acetate in the acetylCoA pool thereby inhibiting the labeling reaction. This interpretation is supported by 14C-labeling of alfalfa acetylated histones by [1-14C]butyrate.  相似文献   

16.
M Leffak 《Biochemistry》1988,27(2):686-691
Incubation of MSB-1 chicken lymphoblastoid cells with hydroxyurea leads to a rapid 25-fold decrease in the incorporation of [3H]thymidine into DNA and a 5-fold decrease [3H]lysine into the nucleosome core histones. I have investigated whether the distortion in the normal proportion of histone-DNA synthesis results in alterations in the nucleosome assembly process and find that neither the stoichiometry of new histone synthesis nor the deposition is appreciably changed during hydroxyurea incubation. Protein cross-linking and micrococcal nuclease digestion show that the histones synthesized during hydroxyurea treatment form octamer structures and are assembled into typical nucleosome particles. Minor nucleosome subpopulations are found which exhibit altered sensitivity to nuclease digestion and which are depleted in new histones H3 and H4. When MSB-1 cells incubated in hydroxyurea are pulsed briefly with density-labeled amino acids and [3H]lysine, the radiolabeled core histone octamers formed are as dense as individual monomer histones. These results suggest that the newly synthesized histone octamers are uniformly dense and do not contain mixtures of new and old histones. Thus, histones synthesized during hydroxyurea incubation are deposited nonrandomly and do not exchange with preexisting histones.  相似文献   

17.
The modification of core histone proteins in mouse 10T1/2 cells and human lung epitheloid (A549) cells by B(a)PDE in vivo and in vitro was found to be similar. Only histones H2A and H3 were extensively modified. Also other proteins, possibly A24 protein and the minor histone H1 species seem to be binding relatively high levels of this ultimate carcinogen. Butyrate treatment which causes hyperacetylation of the core histones, did not change the specificity of B(a)PDE binding to core histones, nor did it affect the initial level of DNA modification. The acetylated species of histone H3 were all accessible to B(a)PDE, suggesting that these epsilon-amino-groups of the lysine residues are not the targets of the B(a)PDE. The rate of removal of B(a)P-DNA adducts was not affected by butyrate treatment in either normal human or XP fibroblasts. Furthermore the B(a)P-core histones were not preferentially removed from normal human fibroblast chromatin during a 24 h post-treatment incubation.  相似文献   

18.
Sodium butyrate at a concentration of 5mM causes significant hyperacetylation of the core histones in the human breast cancer cell line MCF-7. Histone hyperacetylation was achieved in rapidly-growing cells at 40% confluency after 24 hours in 5mM sodium butyrate. More nearly confluent cells did not reach as high a level of histone hyperacetylation. Upon assaying the estrogen receptors, both cytosolic and KCl-extractable nuclear, we found that butyrate treatment had lowered the estrogen receptor levels in both compartments. To our knowledge this is the first report of an effect of sodium butyrate on estrogen receptor levels.  相似文献   

19.
Human and mouse cells in culture were treated with various concentrations of sodium butyrate. Acid-extracted histones of control and butyrate-treated cells were analyzed by two-dimensional gel electrophoresis. All core histones of the control cells contained modified forms. All core histones of the butyrate-treated cells were hyperacetylated. Depending on the number of acetylation sites per molecule, each histone or histone variant exhibited a characteristic number of acetylated forms. This number was the same for each histone common in human and mouse cells treated with butyrate. Histones 2A.1, 2A.2, and 2A.X have two sites of inner acetylation; 2A.Z has 3; 2B's have 5; and each one of the H3 variants as well as H4 have 4.  相似文献   

20.
The effect of treatment with either whole calf thymus histones, or individually isolated histones, or polyarginine, or polylysine, on the nuclear size of BHK21 cells has been investigated. Incubation of the cells with mixed histones (12.5--44 microgram/ml) for 1 h considerably increased nuclear size. Increasing the histone concentration and/or the incubation time resulted in a decrease in the effect and could result in no change in nuclear size. Treatment of the cells with polyarginine or polylysine did not affect nuclear size. Experiments with individually isolated histones showed that the nuclear size effect was almost exclusively due to the histone H4. It is argued that the changes observed most likely resulted from interaction of H4 with the nucleus, and could reflect the properties of this particular histone molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号