首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the derivatives of macrosphelides (MS) core (simplified 16-membered core structure of natural MS) to induce apoptosis in human lymphoma U937 cells was investigated. Of the five compounds examined, MS core with ketones at 8 and 14 positions (MS5) showed the highest potency to induce apoptosis, while another, MS3 with one ketone, was minimal potent. MS5 was found to induce apoptosis in the U937 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis. MS5 treated cells showed increase in intracellular reactive oxygen species (ROS), glutathione depletion, Bid activation and lipid peroxidation. Pretreatment of cells with pancaspase inhibitor resulted in the complete inhibition of MS5-induced apoptosis. N-Acetyl-l-cysteine (NAC) pretreatment resulted in the increase in glutathione concentration, reduction of intracellular ROS, complete inhibition of DNA fragmentation, mitochondrial membrane potential (MMP) collapse, Fas externalization and caspase-8 activation. Furthermore, MS5-induced oxidative stress also triggered transient increase in intracellular calcium ion ([Ca2+]i) concentration which was completely inhibited by NAC. Pretreatment with an intracellular Ca2+ chelator, BAPTA-AM reduced MS5-induced DNA fragmentation and caspase-8 activation while it has marginal effects on MMP collapse. Taken together our present data showed that a rapid increase in intracellular ROS by MS5 triggers apoptosis via the Fas/caspase-8-mediated mitochondrial pathway suggesting that the presence of diketone makes the compound more potent to induce apoptosis. These characteristics of MS5 will make it useful for therapeutic applications of targeted apoptosis.  相似文献   

2.
3.
High doses of diazepam (10.0-20.0 mg/kg) were shown to reduce the volume of acute inflammatory paw edema in rats as a response to carrageenan administration. This effect was attributed to an action of diazepam on the peripheral-type benzodiazepine receptor (PBR) present in the adrenal and/or immune/inflammatory cells. The present study was undertaken to analyze the involvement of nitric oxide (NO) on the effects of diazepam on carrageenan-induced paw edema in rats (CIPE) and to look for the presence of PBR and inducible/constitutive NO synthases (NOS) on slices taken from the inflamed paws of diazepam-treated rats. For that, an acute inhibition of NO biosynthesis was achieved using 50.0 mg/kg No mega-nitro-L-arginine (L-NAME), L-arginine (300.0 mg/kg), the true precursor of NO, and D-arginine (300.0 mg/kg), its false substrate, were also used. The following results were obtained: (1) diazepam (10.0 and 20.0 mg/kg) decreased CIPE values in a dose- and time-dependent way; (2) diazepam effects on CIPE were increased by L-NAME pretreatment; (3) treatment with L-arginine but not with D-arginine reverted at least in part the decrements of CIPE values observed after diazepam administration; (4) PBR were found in endothelial and inflammatory cells that migrated to the inflammatory site at the rat paw; (5) confocal microscopy showed the presence of both PBR and NOS in endothelial and inflammatory cells taken from inflamed paw tissues of rats treated with diazepam a finding not observed in tissues provided from rats treated with diazepam's control solution. These results suggest an important role for NO on the effects of diazepam on CIPE. Most probably, these effects reflect a direct action of diazepam on PBR present in the endothelium of the microvascular ambient and/or on immune/inflammatory cells. An action like that would lead, among other factors, to a decrease in NO, generated by NO synthase, and thus in the mechanisms responsible for CIPE.  相似文献   

4.
As a primary antioxidant, ascorbic acid (AA) provides beneficial effects for vascular health mitigating oxidative stress and endothelial dysfunction. However, the association of intracellular AA with NO production occurring inside the endothelial cells remains unclear. In the present study, we addressed this issue by increasing intracellular AA directly through de novo synthesis. To restore AA synthesis pathway, bovine aortic endothelial cells were transfected with the plasmid vector encoding L-gulono-1,4-lactone oxidase (GULO, EC 1.1.3.8), the missing enzyme converting L-gulono-1,4-lactone (GUL) to AA. Functional expression of GULO was verified by Western blotting and in vitro enzyme activity assay. GULO expression alone did not lead to AA synthesis but the supply of GUL resulted in a marked increase of intracellular AA. When the cells were stimulated with calcium ionophore, A23187, NO production was more active in the GULO-expressing cells supplied with GUL, in comparison with the cells without GULO expression or without GUL supply, indicating that intracellular AA regulated NO production. Enhancement of NO production by intracellular AA was further verified in aortic endothelial cells obtained from eNOS knockout mice that were cotransfected with eNOS and GULO constructs. GULO-dependent AA synthesis also elevated intracellular tetrahydrobiopterin content, implicating that this essential cofactor of endothelial nitric oxide synthase (eNOS) might mediate the AA effect. The present study strongly suggests that intracellular AA plays critical roles in vascular physiology through enhancing endothelial NO production.  相似文献   

5.
The apoptosis-inducing ability of hybrid compounds composed of macrosphelide and thiazole-containing side chain of epothilones was investigated. Among the tested series of hybrid compounds the one containing thiazole side chain at C15 (MSt-2) showed the maximum potency to induce apoptosis, while another containing thiazole side chain at C3 (MSt-6) was less potent. MSt-2 was found to induce apoptosis in human lymphoma (U937) cells in a dose- and time-dependent manner as confirmed by DNA fragmentation analysis. MSt-2 treated cells showed rapid reactive oxygen species (ROS) formation and c-Jun N-terminal kinase (JNK) activation. Furthermore, significant activation of extrinsic pathway as evident by Fas expression and caspase-8 activation was also observed. MSt-2-mediated decreased expression of Bid is an important event for cross talk between intrinsic and extrinsic signaling. N-acetyl-l-cysteine pre-treatment rescued cells from MSt-2-induced ROS formation, mitochondrial membrane potential (Δψm) loss, Fas expression, caspase-8 and -3 activation and DNA fragmentation. Moreover, antioxidant enzymes catalase and/or superoxide dismutase conjugated with polyethylene glycol also inhibit MSt-2-induced ROS formation, apoptosis and Δψm loss suggesting thereby pro-oxidant effects of MSt-2. Furthermore, JNK and pan-caspase inhibitors also protect cells from MSt-2-induced apoptosis. In addition to this, MSt-2 was found to be more potent in human colon carcinoma (HCT116) and human gastric cancer (AGS) cells while it has no effect on human normal dermal fibroblast. The important structure-activity relationship observed in the current study which makes MSt-2 more potent than MSt-6 is the position of thiazole side chain and stereochemistry of position 3 in chemical structure. In short the results of our study demonstrate that MSt-2-induced rapid ROS generation and mitochondrial dysfunction in cells trigger events responsible for mitochondria-dependent apoptosis pathway.  相似文献   

6.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

7.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

8.
Engagement of membrane immunoglobulin (mIg) on WEHI-231 mouse B lymphoma cells results in growth arrest at the G1 phase of the cell cycle, followed by a reduction of mitochondrial membrane potential (ΔΨm) and apoptosis. WEHI-231 cells resemble immature B cells in terms of the cell surface phenotype and sensitivity to mIg engagement. However, the molecular mechanisms underlying mIg-induced loss of ΔΨm and apoptosis have not yet been established. In this study, we show that apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase 1 (JNK1) signaling pathway participates in mIg-induced apoptosis through the generation of reactive oxygen species (ROS). Stimulation of WEHI-231 cells with anti-IgM induces phosphorylation and subsequent activation of ASK1, leading to JNK activation. Anti-IgM stimulation immediately (5 min) induces hydrogen peroxide (H2O2) production with a substantial increase during later time points (36-48 h), accompanied by loss of ΔΨm and an increase in cells with sub-G1 DNA content. The anti-IgM-induced late-phase H2O2 production, loss of ΔΨm, and increase in the sub-G1 fraction were all reduced substantially in WEHI-231 cells overexpressing a dominant-negative form of ASK1, compared with control vector alone, but enhanced substantially in cells overexpressing a constitutively active form of ASK1. These mIg-mediated events were also partially abrogated by ROS scavenger N-acetyl-l-cysteine (NAC). Taken together, these results suggest that mIg engagement induces H2O2 production leading to activation of ASK1-JNK1 pathway, creating a feedback amplification loop of ROS-ASK/JNK that leads to loss of ΔΨm and finally apoptosis.  相似文献   

9.
Nitric oxide (NO), derived from catalysis of inducible NO synthase (iNOS), limits malaria parasite growth in mammals. Transforming growth factor (TGF)-beta1 suppresses iNOS in cells in vitro as well as in vivo in mice, but paradoxically severe malaria in humans is associated with low levels of TGF-beta1. We hypothesized that this paradox is a universal feature of infection and occurs in the mosquito Anopheles stephensi, an invertebrate host for Plasmodium that also regulates parasite development with inducible NO synthase (AsNOS). We show that exogenous human TGF-beta1 dose-dependently regulates mosquito AsNOS expression and that parasite killing by low dose TGF-beta1 depends on AsNOS catalysis. Furthermore, induction of AsNOS expression by TGF-beta1 is regulated by NO synthesis. These results suggest that TGF-beta1 plays similar roles during parasite infection in mammals and mosquitoes and that this role is linked to the effects of TGF-beta1 on inducible NO synthesis.  相似文献   

10.
There are many neutrophils in the vaginal discharge from women infected with Trichomonas vaginalis. The aim of our study was to determine whether human neutrophil apoptosis may be regulated by reactive oxygen species (ROS) in response to trichomonads infection. Incubation of human neutrophils with live trichomonads caused marked receptor shedding of CD16, decrease of mitochondrial membrane potential (MMP) and caspase-3 activation in human neutrophils. These proapoptotic effects of T. vaginalis on neutrophils were inhibited by pretreatment of neutrophils with an inhibitor of NADPH oxidase, diphenyleneiodonium chloride (DPI), suggesting an important role of intracellular ROS accumulation in T. vaginalis-triggered apoptosis. Indeed, large amounts of ROS levels were detected in neutrophils incubated with live trichomonads, and were also effectively inhibited by DPI. However, pan-caspase inhibitor z-VAD-fmk or caspase-3 inhibitor z-DEVD-fmk did not affect T. vaginalis-induced ROS generation in neutrophils. These results suggest that ROS-dependent caspase-3 activation plays an important role in apoptosis of human neutrophils induced by T. vaginalis.  相似文献   

11.
D-allose, an aldo-hexose, is a rare sugar whose biological functions remain largely unclear. Recently, we demonstrated a novel inhibitory effect of D-allose on production of reactive oxygen species (ROS). Here, we focused on investigating cryoprotective effects of D-allose on cell viability. Mammalian cell lines including OVCAR-3 (human ovarian cancer), HeLa (human cervical cancer), HaCaT (human skin keratinocytes), HDF (human dermal fibroblasts) and NIH3T3 (murine fibroblasts) cells were frozen at -80 degrees C in culture media with various D-allose concentrations. Cells were allowed to recover for 24 h, 1 week or 1 month prior to survival assessment using the trypan blue dye exclusion test, when cell proliferation was evaluated by MTT assay. A beneficial protective role of D-allose on cell survival was found, similar to that of trehalose (disaccharide of glucose), a recognized cryoprotectant. The results suggest that D-allose as a sole additive may provide effective protection for mammalian cells during freezing. Practical studies now need to be performed with D-allose, for example to determine optimal freezing protocols and explore potential for preservation of tissues or organs at non-freezing temperatures.  相似文献   

12.
Pamenter ME  Hogg DW  Buck LT 《FEBS letters》2008,582(12):1738-1742
Increased nitric oxide (NO) production from hypoxic mammalian neurons increases cerebral blood flow (CBF) but also glutamatergic excitotoxicity and DNA fragmentation. Anoxia-tolerant freshwater turtles have evolved NO-independent mechanisms to increase CBF; however, the mechanism(s) of NO regulation are not understood. In turtle cortex, anoxia or NMDAR blockade depressed NO production by 27+/-3% and 41+/-5%, respectively. NMDAR antagonists also reduced the subsequent anoxic decrease in NO by 74+/-6%, suggesting the majority of the anoxic decrease is due to endogenous suppression of NMDAR activity. Prevention of NO-mediated damage during the transition to and from anoxia may be incidental to natural reductions of NMDAR activity in the anoxic turtle cortex.  相似文献   

13.
The L-rhamnose isomerase gene (rhi) of Mesorhizobium loti was cloned and expressed in Escherichia coli, and then characterized. The enzyme exhibited activity with respect to various aldoses, including D-allose and L-talose. Application of it in L-talose production from galactitol was achieved by a two-step reaction, indicating that it can be utilized in the large-scale production of L-talose.  相似文献   

14.
In the last few decades, enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) using tyrosine phenol-lyase (Tpl) has been industrialized. This method has an intrinsic problem of tyrosine contamination because Tpl is synthesized under tyrosine-induced conditions. Herein, we constructed a hyper-L-dopa-producing strain by exploiting a mutant TyrR, an activator of tpl. The highest productivity was obtained for the strain grown under non-induced conditions. It was 30-fold higher than that obtained for tyrosine-induced wild-type cells.  相似文献   

15.
Regulatory cells, important controllers of immune homeostasis, carry out a multi-pronged attack by deleting overactive pathogenic immune cells, by supporting anergy, and by blocking effector functions, thereby contributing to the amelioration of disease. CD8+ T cells co-expressing CD11c are a new addition to the growing list of regulatory cells. Naïve mice harbor CD11c-expressing CD8+ T cells (<3%) that expand further in an antigen-dependent manner. Although activated CD11c+CD8+ T cells express suppressive cytokines such as IL-10 and TGF-β, their production of IFN-γ is central to their immune suppressive potential. The CD11c+CD8+ T cells target pathogenic CD4+ T cells in a cell-cell contact dependent manner via IDO- and GCN2-dependent mechanisms. Adoptive transfer of activated CD11c+CD8+ T cells halts the progression of autoimmune rheumatoid arthritis and colitis. However, in certain virus and cancer models the CD11c+CD8+ T cells assume the role of immune effectors, boosting immune potential. This seemingly dual nature of these cells - exerting regulatory vs. effector activities - makes them an attractive therapeutic target. In this review, we discuss the discovery, origins and developmental requirements of CD11c+CD8+cells, and the basis of their immuno-suppressive and effector potentials.  相似文献   

16.
Pan Y  Ayani T  Nadas J  Wen S  Guo Z 《Carbohydrate research》2004,339(12):2091-2100
N-Acetyl-D-neuraminic acid (NeuNAc) aldolase is an important enzyme for the metabolic engineering of cell-surface NeuNAc using chemically modified D-mannosamines. To explore the optimal substrates for this application, eight N-acyl derivatives of D-mannosamine were prepared, and their accessibility to NeuNAc aldolase was quantitatively investigated. The N-propionyl-, N-butanoyl-, N-iso-butanoyl-, N-pivaloyl-, and N-phenylacetyl-D-mannosamines proved to be as good substrates as, or even better than, the natural N-acetyl-D-mannosamine, while the N-trifluoropropionyl and benzoyl derivatives were poor. It was proposed that the electronic effects might have a significant influence on the enzymatic aldol condensation reaction of D-mannosamine derivatives, with electron-deficient acyl groups having a negative impact. The results suggest that N-propionyl-, N-butanoyl-, N-iso-butanoyl-, and N-phenylacetyl-D-mannosamines may be employed to bioengineer NeuNAc on cells.  相似文献   

17.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

18.
In previous studies [FEBS Lett. 434 (1998) 231, Arch. Biochem. Biophys. 404 (2002) 92], we demonstrated for the first time that D-aspartate (D-Asp) is synthesized in cultured mammalian cell lines, such as pheochromocytoma 12 (PC12) and its subclone, MPT1. Our current focus is analysis of the dynamics of D-Asp homeostasis in these cells. In this communication, we show that L-glutamate (Glu) and L-Glu transporter substrates in the extracellular space regulate the homeostasis of endogenous D-Asp in MPT1 cells. D-Asp is apparently in dynamic homeostasis, whereby endogenous D-Asp is constantly released into the extracellular space by an undefined mechanism, and continuously and intensively taken up into cells by an L-Glu transporter. Under these conditions, L-Glu and its transporter substrates in the medium may competitively inhibit the uptake of D-Asp via the transporter, resulting in accumulation of the amino acid in the extracellular space. We additionally demonstrate that DL-TBOA, a well-established L-Glu transporter inhibitor, is taken up by the transporter during long time intervals, but not on a short time-scale.  相似文献   

19.
To gain further insight into yeast acetic acid-induced programmed cell death (AA-PCD) we analyzed the effects of the antioxidant N-acetyl-l-cysteine (NAC) on cell viability, hydrogen peroxide (H2O2) production, DNA fragmentation, cytochrome c (cyt c) release and caspase-like activation in wild type (wt) and metacaspase and/or cyt c-lacking cells. We found that NAC prevents AA-PCD in wt cells, by scavenging H2O2 and by inhibiting both cyt c release and caspase-like activation. This shows the occurrence of a reactive oxygen species (ROS)-dependent AA-PCD. Contrarily no NAC dependent change in AA-PCD of mutant cells was detectable, showing that a ROS-independent AA-PCD can also occur.  相似文献   

20.
Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that impairment of antioxidant systems, such as a reduction in catalase and superoxide dismutase (SOD) activity, by ethanol exposure may elevate the levels of ROS/NO in endothelium, resulting in BBB damage. This study examines whether stabilization of antioxidant enzyme activity results in suppression of ROS levels by anti-inflammatory agents. To address this idea, we determined the effects of ethanol on the kinetic profile of SOD and catalase activity and ROS/NO generation in primary human brain endothelial cells (hBECs). We observed an enhanced production of ROS and NO levels due to the metabolism of ethanol in hBECs. Similar increases were found after exposure of hBECs to acetaldehyde, the major metabolite of ethanol. Ethanol simultaneously augmented ROS generation and the activity of antioxidative enzymes. SOD activity was increased for a much longer period of time than catalase activity. A decline in SOD activity and protein levels preceded elevation of oxidant levels. SOD stabilization by the antioxidant and mitochondria-protecting agent acetyl-L-carnitine (ALC) and the anti-inflammatory agent rosiglitazone suppressed ROS levels, with a marginal increase in NO levels. Mitochondrial membrane protein damage and decreased membrane potential after ethanol exposure indicated mitochondrial injury. These changes were prevented by ALC. Our findings suggest the counteracting mechanisms of oxidants and antioxidants during alcohol-induced oxidative stress at the BBB. The presence of enzymatic stabilizers favors the ROS-neutralizing antioxidant redox of the BBB, suggesting an underlying protective mechanism of NO for brain vascular tone and vasodilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号