首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial Creatine Kinase: Properties and Function   总被引:4,自引:0,他引:4  
This review describes properties of mitochondrial creatine kinase from heart and skeletal muscle studied in the author's group at the Department of Biochemistry of Moscow State University. The results are compared to the data in the literature. The author's point of view on the physiological role of mitochondrial creatine kinase is presented.  相似文献   

2.
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly ethylmalonic acid (EMA) and clinically by neurological dysfunction. In the present study we investigated the in vitro effects of EMA on the activity of the mitochondrial (Mi-CK) and cytosolic (Cy-CK) creatine kinase isoforms from cerebral cortex, skeletal muscle, and cardiac muscle of young rats. CK activities were measured in the mitochondrial and cytosolic fractions prepared from whole-tissue homogenates of 30-day-old Wistar rats. The acid was added to the incubation medium at concentrations ranging from 0.5 to 2.5 mM. EMA had no effect on Cy-CK activity, but significantly inhibited the activity of Mi-CK at 1.0 mM and higher concentrations in the brain. In contrast, both Mi-CK and Cy-CK from skeletal muscle and cardiac muscle were not affected by the metabolite. We also evaluated the effect of the antioxidants glutathione (GSH), ascorbic acid, and a-tocopherol and the nitric oxide synthase inhibitor L-NAME on the inhibitory action of EMA on cerebral cortex Mi-CK activity. We observed that the drugs did not modify Mi-CK activity per se, but GSH and ascorbic acid prevented the inhibitory effect of EMA when co-incubated with the acid. In contrast, L-NAME and -tocopherol could not revert the inhibition provoked by EMA on Mi-CK activity. Considering the importance of CK for brain energy homeostasis, it is proposed that the inhibition of Mi-CK activity may be associated to the neurological symptoms characteristic of SCAD deficiency.  相似文献   

3.
Stichopus arginine kinase (AK) is a unique enzyme in that it evolved not from the AK gene but from the creatine kinase (CK) gene: the entire amino acid sequence is homologous with other CKs apart from the guanidine specificity region (GS region), which is identical in structure to that of AK. Ten independent mutations were introduced around the GS region in Stichopus AK. When an insertion or deletion was introduced near the GS region, the Vmax of the mutant enzyme was dramatically decreased to less than 0.1% of the wild type, suggesting that the length of the GS region is crucial for the recognition of the guanidine substrate. Replacement of Phe63 and Leu65 to Gly in the Stichopus enzyme caused a remarkable increase in the Kmarg. This indicates that Phe63 and Leu65 are associated with the arginine substrate-binding affinity. The hydrogen bond formed between the Asp62 and Arg193 residues is thought to play a key role in stabilizing the closed substrate-bound structure of AK. Mutants that eliminated this hydrogen bond had a considerably decreased Vmax, accompanied by a threefold increase in Kmarg. It is noted that the value of the Kmarg of the mutants became very close to the Kdarg value of the wild type. Six independent mutations were introduced in the GS region of Danio M-CK. Almost equivalent values of Kmcr and Kdcr in all of the mutants indicated that a typical synergism was completely lost. The results suggested that the Ile69 to Gly mutant, displaying a high Kmcr and a low Vmax, plays an important role in creatine-binding. This is consistent with the observation that in the structure of Torpedo CK, Ile69 provides a hydrophobic pocket to optimize creatine-binding.  相似文献   

4.
用化学修饰剂NEM、二甲基溴化锍、EDC、DEPC、TNM、对硝基苯乙二醛、PMSF、TNBS对芽孢杆菌B23产生的甘露聚糖酶M an23进行化学修饰,并测定修饰反应的动力学参数关系。结果显示半胱氨酸、色氨酸(1个)和谷氨酸(或天冬氨酸)残基(2个)是酶活性的必需基团;组氨酸、酪氨酸、精氨酸、丝氨酸和赖氨酸残基均为非必需基团。双向电泳结果显示酶蛋白分子具有一个链内二硫键(Cys90-Cys110)。荧光光谱测定结果显示该酶最大吸收峰为336 nm。底物作用导致酶的发射光谱发生蓝移,说明色氨酸残基位于酶蛋白分子内部的疏水区。  相似文献   

5.
Abstract: Titrimetric determination of the dissociation constants for the binding of substrates to creatine kinase from monkey brain reveals 13-fold and 4-fold synergism in the forward and reverse directions, respectively. This synergism is expressed as a decrease in the KD for a given substrate in the ternary complex compared with the binary complex and may be a reflection of substrate-induced conformational change. Creatine kinase labeled with two molecules of 5′-iodoacetamidofluorescein displays a blue shift and a decrease in fluorescence intensity upon binding of MgADP, indicative of movement of the dye into a more hydrophobic environment and quenching of the extrinsic fluorescense. Rotational relaxation times determined from analysis of fluorescence polarization of dansylated brain creatine kinase decrease from 212 ± 7 ns to 189 ± 6 ns upon MgADP binding. Dansylated creatine kinase in 0.5% sodium dodecyl sulfate has a rotational relaxation time of 135 ± 6 ns. The rotational relaxation time of dansylated muscle-type isoenzyme is unaffected by MgADP and has the same value as the brain isoenzyme-MgADP complex. Polarization values at 25°C for muscle and brain enzyme labeled with 3 - (4 - maleimidylphenyl) - 7 - diethylamino - 4 - methylcoumarin compared with limiting polarization and polarization of the free dye suggest that the dye rotation is severely restricted in the muscle form, but possesses freedom of rotation in the brain form. These results support the conclusion that compared with the muscle isoenzyme, the brain isoenzyme is more open at the active site and more flexible overall. Binding of MgADP by brain creatine kinase produces a protein more compact across one or both of its rotational axes, thus resembling the conformation of the muscle isoenzyme. It is probable that creatine kinase in the brain, unlike that from muscle, is subject to kinetic regulation accompanied by conformational modification. This suggests that the neurobiochemical role of the brain isoenzyme is distinct from the metabolic function of the muscle isoenzyme.  相似文献   

6.
In an attempt to alter the catalytic properties of horseradish peroxidase (HRP, EC 1.11.1.7), aspartic, glutamic and arginine residues were modified using ethanedithiol and diacetyl. Modification of Asp and Glu led to a marked increase in Vmax along with denaturation of the protein. The thiol groups introduced were thought to be responsible, despite being situated on the periphery of the molecule as shown by the modification of the apoenzyme. The role of Arg 38 in the activation of hydrogen peroxide was indicated by the modifications of both enzyme and apoenzyme. An amino acid residue close to Arg 38 was thought to take over its function after blocking the group.  相似文献   

7.
Steady-state kinetics of the bovine heart NADH:coenzyme Q oxidoreductase reaction were analyzed in the presence of various concentrations of NADH and coenzyme Q with one isoprenoid unit (Q1). Product inhibitions by NAD+ and reduced coenzyme Q1 were also determined. These results show an ordered sequential mechanism in which the order of substrate binding and product release is Q1–NADH–NAD+–Q1H2. It has been widely accepted that the NADH binding site is likely to be on the top of a large extramembrane portion protruding to the matrix space while the Q1 binding site is near the transmembrane moiety. The rigorous controls for substrate binding and product release are indicative of a strong, long range interaction between NADH and Q1 binding sites.  相似文献   

8.
The role of subunit III in the function of mitochondrial cytochrome c oxidase is not clearly understood. Previous work has shown that chemical modification of subunit III with N,N-dicyclohexylcarbodiimide (DCCD) reduced the proton-pumping efficiency of the enzyme by an unknown mechanism. In the current work, we have employed biochemical approaches to determine if a conformational change is occurring within subunit III after DCCD modification. Control and DCCD modified beef heart enzyme were subjected to limited proteolysis in nondenaturing detergent solution. Subunit III in DCCD treated enzyme was more susceptible to chymotrypsin digestion than subunit III in the control enzyme. We also labeled control and DCCD-modified enzyme with iodoacetyl—biotin, a sulfhydryl reagent, and found that subunit III of the DCCD-modified enzyme was more reactive when compared to subunit III of the control enzyme, indicating an increase in reactivity of subunit III upon DCCD binding. The cross linking of subunit III of the enzyme induced by the heterobifunctional reagent, N-succinimidyl(4-azidophenyl -1,3-dithio)-propionate (SADP), was inhibited by DCCD modification, suggesting that DCCD binding prevents the intersubunit cross linking of subunit III. Our results suggest that DCCD modification of subunit III causes a conformational change, which most likely disrupts critical hydrogen bonds within the subunit and also those at the interface between subunits III and I in the enzyme. The conformational change induced in subunit III by covalent DCCD binding is the most likely mechanism for the previously observed inhibition of proton-pumping activity.  相似文献   

9.
The ferredoxin-dependent sulfite reductase from maize was treated, in separate experiments, with three different covalent modifiers of specific amino acid side chains. Treatment with the tryptophan-modifying reagent, N-bromosuccinimide (NBS), resulted in a loss of enzymatic activity with both the physiological donor for the enzyme, reduced ferredoxin, and with reduced methyl viologen, a non-physiological electron donor. Formation of the 1:1 ferredoxin/sulfite reductase complex prior to treating the enzyme with NBS completely protected the enzyme against the loss of both activities. Neither the secondary structure, nor the oxidation-reduction midpoint potential (E m) values of the siroheme and [4Fe–4S] cluster prosthetic groups of sulfite reductase, nor the binding affinity of the enzyme for ferredoxin were affected by NBS treatment. Treatment of sulfite reductase with the lysine-modifying reagent, N-acetylsuccinimide, inhibited the ferredoxin-linked activity of the enzyme without inhibiting the methyl viologen-linked activity. Complex formation with ferredoxin protects the enzyme against the inhibition of ferredoxin-linked activity produced by treatment with N-acetylsuccinimide. Treatment of sulfite reductase with N-acetylsuccinimide also decreased the binding affinity of the enzyme for ferredoxin. Treatment of sulfite reductase with the arginine-modifying reagent, phenylglyoxal, inhibited both the ferredoxin-linked and methyl viologen-linked activities of the enzyme but had a significantly greater effect on the ferredoxin-dependent activity than on the reduced methyl viologen-linked activity. The effects of these three inhibitory treatments are consistent with a possible role for a tryptophan residue the catalytic mechanism of sulfite reductase and for lysine and arginine residues at the ferredoxin-binding site of the enzyme.  相似文献   

10.
为了探索条斑紫菜凝集素(Porphyra yezoensis Ueda lectin, PYL)的作用机理,对其进行了分离和纯化.条斑紫菜经磷酸盐缓冲液浸泡、20%~75%硫酸铵分级、DEAE 纤维素52离子交换层析和Sephadex G-200凝胶过滤层析,得到PYL纯品. Sephadex G-200分子筛层析测得其分子量为63.2 kD,在非还原SDS-PAGE上显示1条蛋白染色带,分子量为63.1 kD,还原SDS-PAGE显示1条蛋白染色带,亚基分子量为15.8 kD.PYL在对兔、大鼠、鸡、羊、狗血细胞的凝集作用中,对大鼠红细胞的凝集活性最高.PYL在pH 6.50~10.53范围内均有活性,在pH 8.40~8.91活性最高.经42 ℃热处理10 min后,仍然对大鼠红细胞血凝活性保留12.5%,其活性最大温度范围为4 ℃~20 ℃, 48 ℃加热10 min后,其活性完全丧失.EDTA对PYL的凝集活性有抑制作用,最小抑制浓度为156 mmol/L,而 Ca2+和Mg2+未发生凝集抑制现象.PYL凝集大鼠红细胞的作用不被D 果糖、葡萄糖、D-半乳糖、D-甘露糖、菊粉、γ球蛋白、牛甲状腺球蛋白等所抑制,但可被蔗糖和麦芽糖抑制,最小抑制浓度蔗糖为20 mmol/L,麦芽糖为40 mmol/L.用N 溴代丁二酰亚胺(NBS) 对PYL分子中的Trp残基进行化学修饰,有2.1个Trp残基被修饰,修饰后PYL活性丧失, 表明Trp残基是PYL凝集活性所必需的基团.  相似文献   

11.
The refolding process and the equilibrium intermediates of urea-denatured arginine kinase (AK) were investigated by 1-anilino-8-naphthalenesulfonate (ANS) intrinsic fluorescence, far-UV circular dichroism (CD), size-exclusion chromatography (SEC), and enzymatic activity. In dilute denaturant, two equilibrium refolding intermediates (I and N') were discovered, and a refolding scheme of urea-denatured AK was proposed. During the refolding of urea-denatured AK, the fluorescence intensity increased remarkably, accompanied by a significant blue shift of the emission maximum and a pronounced increase in molar ellipticity of CD at 222 nm. The first folding intermediate (I) was inactive in urea solution ranging between 2.4 and 3.0 M. The second (N') existed between a 0.4- and 0.8-M urea solution, with slightly increased activity. Neither the blue shift emission maximum nor the molar ellipticity of CD at 222 nm showed significant changes in these two regions. The two intermediates were characterized by monitoring the ANS binding ability in various residual urea solutions, and two peaks of the emission intensity were observed in urea solutions of 0.6 and 2.8 M, respectively. The SEC results indicated that a distribution coefficient (K(D)) platform existed in urea solutions ranging between 2.4 and 3.0 M urea, suggesting that there was a similarly apparent protein profile and size in the urea solution region. The refolding kinetics showed that the urea-denatured AK was in two-phase refolding. Proline isomerization occurred in the unfolding process of AK, which blocked the slow phase of refolding. These results suggested that the refolding process of urea-denatured AK contained at the least two equilibrium refolding intermediates.  相似文献   

12.
Tachykinin immunoreactivity has been quantified and characterized in extracts of bovine retinae by combining radioimmunoassay, gel permeation chromatography, and reverse-phase HPLC. Using an antiserum specific for the C-terminal hexapeptide amide of substance P, levels of 3.43 +/- 0.33 ng g-1 and 12.45 +/- 0.76 ng g-1 (mean +/- SD, n = 5) were measured in extracts prepared by acidified ethanol and boiling 0.5 M acetic acid, respectively. Levels of neurokinin A immunoreactivity, assayed using an antiserum cross-reacting with neurokinin A (100%), neurokinin B (50%), neuropeptide K (85%), and substance P (less than 0.1%) were 12.46 +/- 0.47 ng g-1 and 7.20 +/- 0.37 ng g-1 in the same extracts. Gel permeation chromatography identified a single substance P immunoreactant eluting with substance P standard, whereas two neurokinin A immunoreactants were resolved eluting with neuropeptide K and neurokinin A standards. Reverse-phase HPLC analysis resolved immunoreactivity eluting with substance P, neurokinin A, neuropeptide K, and neurokinin B and their respective methionine sulphoxides. The amount of immunoreactive material co-eluting with the respective sulphoxides was higher in acidified ethanol extracts, and substance P was most susceptible to oxidative modification. Subsequent incubation of synthetic substance P with dispersed bovine retinal cells resulted in rapid conversion to three metabolites identified and isolated by reverse-phase HPLC. Each had an amino acid composition identical to that of substance P, and the major product had the same retention time as substance P sulphoxide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
动力学研究揭示两个pK值为4.4和5.8的氨基酸残基可能对内切酶活性起重要作用,化学修饰研究结果表明一个羧基氨基酸对内切葡聚糖苷水解酶活力为必需的,且可能位于或接近酶的催化位点.  相似文献   

14.
Two dynorphin-degrading cysteine proteases, I and II, were extracted with Triton X-100 from neuroblastoma cell membrane, isolated from accompanying dynorphin-degrading trypsin-like enzyme by affinity chromatography on columns of soybean trypsin inhibitor-immobilized Sepharose and p-mercuribenzoate-Sepharose, and separated by ion-exchange chromatography on diethylaminoethyl (DEAE)-cellulose and TSK gel DEAE-5PW columns. Cysteine protease II was purified further by hydroxyapatite chromatography and gel filtration. The molecular weights of cysteine proteases I and II were estimated to be 100,000 and 70,000, respectively, by gel filtration. Both of the enzymes, were inhibited by p-chloromercuribenzoate, N-ethylmaleimide, and high-molecular-weight kininogen, but not or only slightly inhibited by diisopropylphosphorofluoridate, antipain, leupeptin, E-64, calpain inhibitor, and phosphoramidon. Cysteine protease I cleaved dynorphin(1-17) at the Arg6-Arg7 bond with the optimum pH of 8.0, whereas II cleaved dynorphin(1-17) at the Lys11-Leu12 bond and the Leu12-Lys13 bond with the optimum pH values of 8.0 and 6.0, respectively. These bonds corresponded to those that had been proposed as the initial sites of degradation by neuroblastoma cell membrane. Cysteine protease I was further found to show strict specificity toward the Arg-Arg doublet, when susceptibilities of various peptides containing paired basic residues were examined as substrates for the enzyme.  相似文献   

15.
The calcium pump of plasma membranes catalyzes the hydrolysis of ATP and phosphoric esters like p-nitrophenyl phosphate (pNPP). The latter activity requires the presence of ATP and/or calmodulin, and Ca2+ [22, 25]. We have studied the effects of nucleotide-analogues and chemical modifications of nucleotide binding sites on Ca2+-pNPPase activity. Treatment with fluorescein isothiocyanate (FITC), abolished Ca2+-ATPase and ATP-dependent pNPPase, but affected only 45% of the calmodulin-dependent pNPPase activity. The nucleotide analogue eosin-Y had an inhibitory effect on calmodulin-dependent pNPPase (Ki eosin-Y= 2 μm). FITC treatment increased Ki eosin-Y 15 times. Acetylation of lysine residues with N-hydroxysuccinimidyl acetate inactivates Ca2+-ATPase by modifying the catalytic site, and impairs stimulation by modulators by modifying residues outside this site [9]. Acetylation suppressed the ATP-dependent pNPPase with biphasic kinetics. ATP or pNPP during acetylation cancels the fast component of inactivation. Acetylation inhibited only partially the calmodulin-dependent pNPPase, but neither ATP nor pNPP prevented this inactivation. From these results we conclude: (i) ATP-dependent pNPPase depends on binding of ATP to the catalytic site; (ii) the catalytic site plays no role in calmodulin-dependent pNPPase. The decreased affinity for eosin-Y of the FITC-modified enzyme, suggests that the sites for these two molecules are closely related but not overlapped. Acetimidation of the pump inhibited totally the calmodulin-dependent pNPPase, but only partially the ATP-pNPPase. Since calmodulin binds to E1, the E1 conformation or the E2? E1 transition would be involved during calmodulin-dependent pNPPase activity. Received: 20 January 1998  相似文献   

16.
Abstract: In this report we investigate the isoforms of protein kinase C (PKC) present in cultured adrenal chromaffin cells with respect to their modulation by treatment with phorbol ester and their possible differential involvement in the regulation of responses to histamine and bradykinin. The presence of individual isoforms of PKC was investigated by using eight isoform specific antisera, as a result of which PKC-α, ε, and ζ were identified. To characterize down-regulation of these enzymes, cells were incubated for 6–48 h with 1 µM phorbol myristate acetate (PMA). PKC-ε down-regulated more rapidly than PKC-α. At 12 h, PMA pretreatment, for example, PKC-ε was maximally down-regulated (23 ± 4% of controls), whereas PKC-α was unchanged. PKC-α showed partial down-regulation by 24 h of PMA pretreatment. PKC-ζ did not down-regulate at any of the times tested. Translocation from cytosol to membrane in response to PMA was also more rapid for PKC-ε than for PKC-α. The accumulation of total 3H-inositol (poly)phosphates in response to bradykinin or histamine was essentially abolished by prior treatment with 10-min PMA treatment (1 µM). However, with 12-h exposure to PMA, the bradykinin response was restored to the level seen with no prior PMA exposure. The histamine response showed no recovery by 12 h of PMA, but showed partial recovery by 24 h of PMA pretreatment. These observations showed that the restoration of the response to bradykinin corresponds to the loss of PKC-ε, whereas the restoration of the histamine response corresponds to the loss of PKC-α. This picture was confirmed with further studies on cytosolic Ca2+. The results show that chromaffin cells exhibit an unusual pattern of down-regulation of PKC isoforms on prolonged exposure to PMA, and that there is a differential effect of exposure to PMA on the histamine and bradykinin responses, suggesting that different PLC-linked receptors in chromafin cells are differentially regulated by PKC isoforms.  相似文献   

17.
18.
Abstract: Regulatory subunits of type II cAMP-dependent protein kinases (RII) (EC 2.7.1.37) from bovine brain and heart exhibit similar physicochemical and functional properties in vitro . However, the two forms of RII are markedly different in their (a) antigenic determinants, (b) cell and tissue distribution, and (c) subcellular localization. This suggests that each of these cAMP-binding proteins may possess some unique structural features. To assess the degree of overall divergence between the primary structures of brain RII and heart RII, tryptic peptides derived from the two proteins were mapped by reverse phase HPLC on a C18 column. When the column effluent was monitored at 280 nm, 15 peptides were found only in the heart RII digest, while 5 other peptides were obtained only from brain RII. More complex HPLC profiles were observed by following peptide absorbance at 210 nm, but a similar level of diversity was apparent: 13 brain-RII-specific and 15 heart-RII-specific tryptic peptides were identified and resolved with a gradient (0–50%) of acetonitrile in 0.1% trifluoroacetic acid. In complementary experiments, classical two-dimensional mapping analyses revealed that several 32P-labeled tryptic fragments derived from autophosphorylated and photoaffinity-labeled brain RII were separate and distinct from the 32P-peptides isolated from similarly treated heart RII. The HPLC mapping data document a structural basis for the immunological disparity between brain RII and heart RII and suggest that the two cAMP-binding proteins are different proteins rather than interconvertible forms of a single protein. The two-dimensional maps further indicate that significant structural dissimilarities between brain RII and heart RII also occur within the functionally conserved autophosphorylation and cAMP-binding domains.  相似文献   

19.
Abstract: To study the involvement of the protein kinase C (PKC) substrate B-50 [also known as growth-associated protein-43 (GAP-43), neuromodulin, and F1] in presynaptic cholecystokinin-8 (CCK-8) release, highly purified synaptosomes from rat cerebral cortex were permeated with the bacterial toxin streptolysin O (SL-O). CCK-8 release from permeated synaptosomes, determined quantitatively by radioimmunoassay, could be induced by Ca2+ in a concentration-dependent manner (EC50 of ~10-5M). Ca2+-induced CCK-8 release was maximal at 104M Ca2+, amounting to ~10% of the initial 6,000 ± 550 fmol of CCK-8 content/mg of synaptosomal protein. Only 30% of the Caa+-induced CCK-8 release was dependent on the presence of exogenously added ATP. Two different monoclonal anti-B-50 antibodies were introduced into permeated synaptosomes to study their effect on Ca2+-induced CCK-8 release. The N-terminally directed antibodies (NM2), which inhibited PKC-mediated B-50 phosphorylation, inhibited Ca2+-induced CCK-8 release in a dose-dependent manner, whereas the C-terminally directed antibodies (NM6) affected neither B-50 phosphorylation nor CCK-8 release. The PKC inhibitors PKC19–36 and 1 ?(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), which inhibited B-50 phosphorylation in permeated synaptosomes, had no effect on Ca2+-induced CCK-8 release. Our data strongly indicate that B-50 is involved in the mechanism of presynaptic CCK-8 release, at a step downstream of the Ca2+ trigger. As CCK-8 is stored in large densecored vesicles, we conclude that B-50 is an essential factor in the exocytosis from this type of neuropeptide-containing vesicle. The differential effects of the monoclonal antibodies indicate that this B-50 property is localized in the N-terminal region of the B-50 molecule, which contains the PKC phosphorylation site and calmodulin-binding domain.  相似文献   

20.
Abstract: The recently identified 17-amino acid peptide nociceptin (orphanin FQ) is the endogenous ligand for the opioid receptor-like-1 (ORL-1) receptor. A physiologic role for nociceptin (OFQ) activation of the ORL-1 receptor (OFQR) may be to modulate opioid-induced analgesia. The molecular mechanism by which nociceptin (OFQ) and ORL-1 (OFQR) modify opioid-stimulated effects, however, is unclear. Both ORL-1 (OFQR) and opioid receptors mediate pertussis toxin (PTX)-sensitive signal transduction, indicating these receptors are capable of coupling to Gi/Go proteins. This study determines that nociceptin stimulates an intracellular signaling pathway, leading to activation of mitogen-activated protein (MAP) kinase in CHO cells expressing ORL-1 receptor (OFQR). Nociceptin (OFQ)-stimulated MAP kinase activation was inhibited by PTX or by expression of the carboxyl terminus of β-adrenergic receptor kinase (βARKct), which specifically blocks Gβγ-mediated signaling. Expression of the proline-rich domain of SOS (SOS-PRO), which inhibits SOS interaction with p21ras, also attenuated nociceptin (OFQ)-stimulated MAP kinase activation. The phosphatidylinositol 3-kinase (PI-3K) inhibitors wortmannin and LY294002 reduced nociceptin (OFQ)-stimulated MAP kinase activation, whereas inhibition of protein kinase C (PKC) activity by bisindolylmaleimide I or cellular depletion of PKC had no effect. In a similar manner, in cells expressing μ-opioid receptor, [d -Ala2,N-Me-Phe4,Gly-ol]-enkephalin (DAMGO; a μ-opioid receptor-selective agonist) stimulated PTX-sensitive MAP kinase activation that was inhibited by wortmannin, LY294002, βARKct expression, or SOS-PRO expression but not affected by inhibition of PKC activity. These results indicate that both ORL-1 (OFQR) and μ-opioid receptors mediate MAP kinase activation via a signaling pathway using the βγ-subunit of Gi, a PI-3K, and SOS, independent of PKC activity. In cells expressing both ORL-1 (OFQR) and μ-opioid receptors, pretreatment with nociceptin decreased subsequent nociceptin (OFQ)- or DAMGO-stimulated MAP kinase activation. In contrast, pretreatment of cells with DAMGO decreased subsequent DAMGO-stimulated MAP kinase but had no effect on subsequent nociceptin (OFQ)-stimulated MAP kinase activation. These results demonstrate that nociceptin (OFQ) activation of ORL-1 (OFQR) can modulate μ-opioid receptor signaling in a cellular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号