首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of human blood in vitro, and partially purified red blood cells, to metabolize leucovorin, or 5-formyltetrahydrofolate, has been examined. A radioenzymatic assay based upon entrapment of 5,10-methylenetetrahydrofolate, and other reduced folates after cycling to this form, into a stable ternary complex with thymidylate synthase and tritiated 5-fluoro-2'-deoxyuridine-5'-monophosphate was used to estimate reduced folate metabolites. Incubation of whole blood samples with (R,S)5-formyltetrahydrofolate resulted in a time- and concentration-dependent extracellular accumulation of the reduced folates, 5-methyltetrahydrofolate, tetrahydrofolate, 10-formyltetrahydrofolate, and 5,10-methylenetetrahydrofolate. While accumulation with time was nonlinear, the tetrahydrofolate pool showed the greatest overall increase in concentration. 5-Methyltetrahydrofolate, which was the only reduced folate detected in plasma prior to introduction of (R,S)5-formyltetrahydrofolate, accumulated more slowly than tetrahydrofolate. 10-Formyltetrahydrofolate and 5,10-methylenetetrahydrofolate accumulated even more slowly but exhibited nonlinear kinetic patterns similar to those of tetrahydrofolate and 5-methyltetrahydrofolate. When blood cells were removed by centrifugation, a complete loss of metabolic activity was observed. Exposure of purified red blood cells to (R,S)5-formyltetrahydrofolate resulted in accumulation of extracellular reduced folates that was similar to that in whole blood samples while partially purified white blood cells exhibited little activity. Metabolism of the (S) diastereomer of 5-formyltetrahydrofolate accounted for essentially all of the observed extracellular accumulation of reduced folates. We propose that red blood cell-mediated metabolism of 5-formyltetrahydrofolate could, in part at least, account for reduced folate accumulation in plasma when leucovorin is administered to humans.  相似文献   

2.
R G Moran  P D Colman 《Biochemistry》1984,23(20):4580-4589
Folyl polyglutamate synthetase has been partially purified from mouse liver, and the general features of this enzyme have been characterized. The purification procedure utilized fractionation with ammonium sulfate, gel filtration, and affinity chromatography on ATP-agarose and resulted in a 350-fold increase in specific activity with 8-20% recovery of enzyme activity. Enzyme could be stabilized by glycerol or by ATP, but stability was not appreciably enhanced by folate. The enzymatic reaction was completely dependent on folate, ATP, and Mg2+ while partial reaction rates were observed in the absence of KCl or beta-mercaptoethanol. Highest reaction rates were observed at pH 8.2-9.5 at 37 degrees C. Chromatography of purified enzyme on calibrated gel filtration columns suggested a molecular weight of 65 000. Mouse liver folyl polyglutamate synthetase coupled [3H]glutamic acid to all of the naturally occurring folates studied. Analysis of the reaction products by high-performance liquid chromatography demonstrated that several folyl oligoglutamates were formed at low substrate concentrations but that only folyl diglutamate was formed at substrate concentrations approaching saturation. Dihydrofolate, tetrahydrofolate, 5,10-methylenetetrahydrofolate, 10-formyltetrahydrofolate, and 5-formyltetrahydrofolate were the best substrates. Folic acid and 5-methyltetrahydrofolate were also substrates for this reaction, but much higher concentrations of these compounds were required to saturate the enzyme. These data suggest that all of the tetrahydrofolyl compounds (except 5-methyltetrahydrofolate) are the monoglutamyl substrates for polyglutamation in vivo and that 5-methyltetrahydrofolate is not likely to be a direct precursor for folate polyglutamates in mouse liver.  相似文献   

3.
Folate, dihydrofolate, and methotrexate are rapidly taken up by rat liver mitochondria. The apparent maximal matrix folate concentration is about 2.5-fold that of the suspending medium, whereas dihydrofolate and methotrexate equilibrate across the inner membrane. Fully reduced folates, including tetrahydrofolate, 5-methyltetrahydrofolate, and 5,10-methylenetetrahydrofolate penetrate only the intermembrane space. Addition of dihydrofolate or methotrexate effects a rapid release of pre-loaded folate, and external methotrexate promotes the release of pre-loaded dihydrofolate. The extent of dihydrofolate uptake is enhanced by addition of folate. These results suggest that oxidized folates are transported to the matrix by a carrier-mediated mechanism.  相似文献   

4.
The incorporation of radioactive formate into an acid-stable non-volatile form by human erythrocytes is dependent upon the addition of 5-amino-4-imidazolecarboxamide riboside. The formate-incorporating activity of human erythrocytes varies widely among normal individuals and the values obtained are characteristic of the erythrocytes obtained from these individuals. The variation is unrelated to the total folate levels of the erythrocytes as measured by the growth response of Lactobacillus casei but is roughly correlated with the quantity of folate forms in the erythrocytes which support the growth of Steptococcus faecalis. The activities of several enzymes involved in the metabolism of the folate coenzymes has also been measured in extracts of erythrocytes. Extracts from all the individuals contained 10-formyltetrahydrofolate synthase, 5-amino-4-imidazolecarboxamide ribotide transformylase, and 5,10-methylenetetrahydrofolate dehydrogenase. None of the extracts contained detectable quantities of either 5,10-methylenetetrahydrofolate reductase or 5-methyltetrahydrofolate-homocysteine methyltransferase. These data support the conclusion that 5-methyltetrahydrofolate is not in metabolic equilibrium with the other forms of folate in the erythrocyte and the uptake of formate by intact erythrocytes is a function of those forms of the folate coenzymes which can be converted to tetrahydrofolate.  相似文献   

5.
The stability and eventual interconversion of nine mono-glutamate folates (5-methyl-tetrahydrofolate, tetrahydrofolate, 5-formyltetrahydrofolate, 5,10-methenyltetrahydrofolate, 5,10-methylenetetrahydrofolate, dihydrofolate, 10-formylfolic acid, 10-formyltetrahydrofolate and folic acid) during the typical sample preparation steps (heat treatment for 10 min at 100 degrees C and incubation for 2 h at 37 degrees C) at different pH values have been investigated by LC-MS/MS. An LC-MS/MS method with isotopically labelled [(13)C(5)]5-methyltetrahydrofolate and [(13)C(5)] folic acid as internal standards has been developed with enhanced sensitivity using a Chromolith RP-18 column. 5-Methyltetrahydrofolate, folic acid and 10-formylfolic acid are relatively stable at different pHs (from 2 to 10) with and without heat treatment. Tetrahydrofolate shows instability at low pH. 5-Formyltetrahydrofolate and 5,10-methenyltetrahydrofolate can interconvert by changes in pH. Tetrahydrofolate and 5,10-methylenetetrahydrofolate can interconvert with formaldehyde or by changes in pH. Incubation at 37 degrees C for 2 h is much less aggressive for most folates as compared with heat treatment at 100 degrees C. At 37 degrees C most folates are stable at pH values between 4 and 8 except tetrahydrofolate and dihydrofolate, which are degraded at low pH. 10-Formyltetrahydrofolate and 5,10-methylenetetrahydrofolate cannot be quantified in the present method because these compounds are converted to 5,10-methenyltetrahydrofolate and tetrahydrofolate, respectively, in the acidic mobile phase. This study provides useful information for the analysis of folates in the future as well as for the interpretation of quantitative results from earlier work.  相似文献   

6.
Clostridium formicoaceticum ferments fructose labeled with (14)C in carbon 1, 4, 5, or 6 via the Embden Meyerhof pathway. In fermentations of fructose in the presence of (14)CO(2), acetate is formed labeled equally in both carbons. Extracts convert the methyl groups of 5-methyltetrahydrofolate and methyl-B(12) to the methyl group of acetate in the presence of pyruvate. Formate dehydrogenase, 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase, 5,10-methylenetetrahydrofolate dehydrogenase, and 5,10-methylenetetrahydrofolate reductase are present in extracts of C. formicoaceticum. These enzymes are needed for the conversion of CO(2) to 5-methyltetrahydrofolate. It is proposed that acetate is totally synthesized from CO(2) via the reactions catalyzed by the enzymes listed above and that 5-methyltetra-hydrofolate and a methylcorrinoid are intermediates in this synthesis.  相似文献   

7.
DNA photolyase catalyzes the photoreversal of pyrimidine dimers. The enzymes from Escherichia coli and yeast contain a flavin chromophore and a folate cofactor, 5,10-methenyltetrahydropteroylpolyglutamate. E. coli DNA photolyase contains about 0.3 mol of folate/mol flavin, whereas the yeast photolyase contains the full complement of folate. E. coli DNA photolyase is reconstituted to a full complement of the folate by addition of 5,10-methenyltetrahydrofolate to cell lysates or purified enzyme samples. The reconstituted enzyme displays a higher photolytic cross section under limiting light. Treatment of photolyase with sodium borohydride or repeated camera flashing results in the disappearance of the absorption band at 384 nm and is correlated with the formation of modified products from the enzyme-bound 5,10-methenyltetrahydrofolate. Photolyase modified in this manner has a decreased photolytic cross section under limiting light. Borohydride reduction results in the formation of 5,10-methylenetetrahydrofolate and 5-methyltetrahydrofolate, both of which are released from the enzyme. Repeated camera flashing results in photodecomposition of the enzyme-bound 5,10-methenyltetrahydrofolate and release of the decomposition products. Finally, it is observed that photolyase binds 10-formyltetrahydrofolate and appears to cyclize it to form the 5,10-methenyltetrahydrofolate chromophore.  相似文献   

8.
Methylenetetrahydrofolate reductase catalyzes the reduction of N(5), N(10)-methylenetetrahydrofolate to N(5)-methyltetrahydrofolate. Because this substrate is unstable and dissociates spontaneously into formaldehyde and tetrahydrofolate, the customary method to assay the catalytic activity of this enzyme has been to measure the oxidation of [14C]N(5)-methyltetrahydrofolate to N(5), N(10)-methylenetetrahydrofolate and quantify the [14C]formaldehyde that dissociates from this product. This report describes a very sensitive radioenzymatic assay that measures directly the reductive catalysis of N(5),N(10)-methylenetetrahydrofolate. The radio-labeled substrate, [14C]N(5),N(10)-methylenetetrahydrofolate, is prepared by condensation of [C(14)]formaldehyde with tetrahydrofolate and the stability of this substrate is maintained for several months by storage at -80 degrees C in a pH 9.5 buffer. Partially purified methylenetetrahydrofolate reductase from rat liver, incubated with the radio-labeled substrate and the cofactors, NADPH and FAD at pH 7. 5, generates [14C]N(5)-methyltetrahydrofolate, which is stable and partitions into the aqueous phase after the assay is terminated with dimedone and toluene. A K(m) value of 8.2 microM was obtained under conditions of increasing substrate concentration to ensure saturation kinetics. This method is simple, very sensitive and measures directly the reduction of N(5), N(10)-methylenetetrahydrofolate to N(5)-methyltetrahydrofolate, which is the physiologic catalytic pathway for methylenetetrahydrofolate reductase.  相似文献   

9.
Methylenetetrahydrofolate reductase in Clostridium formicoaceticum has been purified to a specific activity of 140 mumol min-1 mg-1 when assayed at 37 degrees C, pH 7.2, in the direction of oxidation of 5-methyltetrahydrofolate with benzyl viologen as electron acceptor. The purified enzyme is judged to be homogeneous by polyacrylamide disc-gel electrophoresis and gel filtration. The enzyme which is an octamer has a molecular weight of about 237,000 and consists of four each of two different subunits having the molecular weights 26,000 and 35,000. The octameric enzyme contains per mol 15.2 +/- 0.3 iron, 2.3 +/- 0.2 zinc, 19.5 +/- 1.3 acid-labile sulfur, and 1.7 FAD. The UV-visible absorbance spectrum has a peak at 385 nm and a shoulder at 430 nm and is that of a flavoprotein containing iron-sulfur centers. The reductase, which is sensitive to oxygen, must be handled anaerobically and is stabilized by 2 mM dithionite. It catalyzes the reduction of methylene blue, menadione, benzyl viologen, rubredoxin, and FAD with 5-methyltetrahydrofolate and the oxidation of reduced ferredoxin and FADH2 with 5,10-methylenetetrahydrofolate. No activity was observed with pyridine nucleotides. It is suggested that the physiologically important reaction catalyzed by the enzyme is the reduced ferredoxin-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate.  相似文献   

10.
Oxidation of 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate was the rate-limiting step in 5-methyltetrahydrofolate metabolism by Lactobacillus casei. The limiting steps in the utilization of suboptimal levels of folate by L. casei were related to the ability of folates to function in purine and/or thymidylate biosynthesis. Folates with glutamate chains of up to at least seven residues were substrates for these biosynthetic enzymes, and comparisons of bacterial growth yields with transport rates for these folates indicated that the polyglutamates were more effective substrates in purine and thymidylate synthesis than the corresponding pteroylmonoglutamates. Lactobacillus casei contained low levels of a B12-independent, pteroylpolyglutamate-specific methionine synthetase. Its methylenetetrahydrofolate reductase also functioned more effectively with pteroylpolyglutamate substrates.  相似文献   

11.
Deoxyadenosine (dAdo) and deoxyguanosine (dGuo) decrease methionine synthesis from homocysteine in cultured lymphoblasts; because of the possible trapping of 5-methyltetrahydrofolate this could lead to decreased purine nucleotide synthesis. Since purine deoxynucleosides could also inhibit purine synthesis de novo at an early step not involving folate metabolism, we measured in azaserine-treated cells 5-amino-4-imidazolecarboxamide (Z-base)-dependent purine nucleotide synthesis using [14C]formate. In the T lymphoblasts, Z-base-dependent purine nucleotide synthesis was decreased 26% by 0.3 microM-dAdo, 21% by 1 microM-dGuo and 28% by 1 microM-adenosine dialdehyde, a potent S-adenosylhomocysteine hydrolase inhibitor; homocysteine fully reversed the inhibitions. The B lymphoblasts were considerably less sensitive to the deoxynucleoside-induced decrease in Z-base-dependent purine nucleotide synthesis, with 100 microM-dAdo required for significant inhibition and no inhibition by dGuo at this concentration; homocysteine partly reversed the inhibition by dAdo. The observed decrease in Z-base-dependent purine nucleotide synthesis could not be attributed either to dUMP depletion changing the folate pools or to decreased ATP availability because dUrd was without effect and during the experimental period the intracellular ATP concentration did not change significantly. Cells with 5,10-methylenetetrahydrofolate reductase deficiency were relatively resistant to inhibition of Z-base-dependent purine nucleotide synthesis by dAdo and adenosine dialdehyde. Our results suggest that deoxynucleosides decrease purine nucleotide synthesis by trapping 5-methyltetrahydrofolate.  相似文献   

12.
Effects of testosterone on the metabolism of folate coenzymes in the rat   总被引:1,自引:1,他引:0  
1. The effects of castration and testosterone treatment on enzymic activities involved in folate coenzyme metabolism in the liver and in accessory sex organs of male adult rats were studied. 2. In the liver of castrated rats the concentration of 10-formyltetrahydrofolate (10-HCO-H(4)folate) synthetase and tetrahydrofolate (H(4)folate) dehydrogenase were significantly decreased whereas that of 5,10-methylenetetrahydrofolate dehydrogenase increased; the treatment with five doses of testosterone caused a return to normal values of these activities. 3. In the prostate of castrated rats a pronounced decrease in H(4)folate dehydrogenase, serine hydroxymethyltransferase and 10-HCO-H(4)folate synthetase activities was observed. The administration of testosterone restored the enzymic activities to normal values. 4. In the seminal vesicles of castrated rats only 10-HCO-H(4)folate synthetase was markedly depressed; testosterone treatment not only restored activity to normal values but raised it to higher than normal values. The slight changes observed in other enzymic activities also returned to normal values with the hormone treatment. 5. These results are discussed in relation to a possible control mechanism of folate metabolism by testosterone.  相似文献   

13.
Binding of folate (pteroylglutamate) and 5-methyltetrahydrofolate, the major endogenous form of folate, to folate binding protein purified from cow's milk was studied at 7°C to avoid degradation of 5-methyltetrahydrofolate. Both folates dissociate rapidly from the protein at pH 3.5, but extremely slowly at pH 7.4, most likely due to drastic changes in protein conformation occurring after folate binding. Dissociation of 5-methyltetrahydrofolate showed no increase at 37°C suggesting that protein-bound-5-methyltetrahydrofolate is protected against degradation. Binding displayed two characteristics, positive cooperativity and a binding affinity that increased with decreasing concentrations of the protein. The binding affinity of folate was somewhat greater than that of 5-methyl tetrahydrofolate, in particular at pH 5.0. Ligand-bound protein exhibited concentration-dependent polymerization (8-mers formed at 13 M) at pH 7.4. At pH 5.0, only folate-bound forms showed noticeable polymerization. The fact that folate at pH 5.0 surpasses 5-methyltetrahydrofolate both with regard to binding affinity and ability to induce polymerization suggests that ligand binding is associated with conformational changes of the protein which favor polymerization.  相似文献   

14.
A method has been developed to characterize the poly-γ-glutamates of 5,10-methyl-enetetrahydrofolate. Incorporation of 5,10-methylenetetrahydrofolates into a ternary complex with L. casei thymidylate synthetase and 5-fluoro-2-deoxy[3H]uridylate stabilizes the reduced folate against oxidation, loss of the one carbon moiety, and poly-γ-glutamate degradation. The covalent ternary complexes, containing 5,10-methylenetetrahydrofolate polyglutamates, were resolved electrophoretically. Electrophoretic mobility was shown to be a linear function of polyglutamate chain-length. The method can potentially be applied to analysis of chemically prepared folate polyglutamates, the monitoring of enzyme-mediated interconversions of polyglutamates and characterization of tissue extract polyglutamates.  相似文献   

15.
Aeration of carrot storage tissue disks in water was accompanied by net folate synthesis and by changes in the specific activities of key folate-dependent enzymes. Disks aerated in 0.1 mM gibberellic acid (GA3) for 48 hr contained higher concentrations of methyltetrahydrofolates but aeration in 5 mM L-methionine reduced net folate synthesis. Gibberellic acid also increased the specific activities of 5,10-methylenetetrahydrofolate reductase (E.C. 1.1.1.68), serine hydroxymethyltransferase (E.C. 2.1.2.1) and 5-methyltetrahydrofolate: homocysteine transmethylase. The levels of these enzymes in disks aerated in L-methionine (5 mM) were comparable or slightly higher than those of disks aerated in water. Activity of the reductase and 10-formyltetrahydrofolate synthetase (E.C. 6.3.4.3) was inhibited by L-methionine in vitro. Aeration increased ability to incorporate formate [14C] into serine, glycine and methionine. Disks aerated for 36 hr in 0.1 mM GA3 incorporated greater amounts of 14C into free methionine but those aerated in L-methionine (5 mM) had less ability to metabolize formate and the specific radioactivities of free glycine, serine and methionine were low.  相似文献   

16.
Trimmer EE  Ballou DP  Matthews RG 《Biochemistry》2001,40(21):6205-6215
The flavoprotein methylenetetrahydrofolate reductase (MTHFR) from Escherichia coli catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using NADH as the source of reducing equivalents. The enzyme also catalyzes the transfer of reducing equivalents from NADH or CH(3)-H(4)folate to menadione, an artificial electron acceptor. Here, we have determined the midpoint potential of the enzyme-bound flavin to be -237 mV. We have examined the individual reductive and oxidative half-reactions constituting the enzyme's activities. In an anaerobic stopped-flow spectrophotometer, we have measured the rate constants of flavin reduction and oxidation occurring in each half-reaction and have compared these with the observed catalytic turnover numbers measured under steady-state conditions. We have shown that, in all cases, the half-reactions proceed at rates sufficiently fast to account for overall turnover, establishing that the enzyme is kinetically competent to catalyze these oxidoreductions by a ping-pong Bi-Bi mechanism. Reoxidation of the reduced flavin by CH(2)-H(4)folate is substantially rate limiting in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction. In the NADH-menadione oxidoreductase reaction, the reduction of the flavin by NADH is rate limiting as is the reduction of flavin by CH(3)-H(4)folate in the CH(3)-H(4)folate-menadione oxidoreductase reaction. We conclude that studies of individual half-reactions catalyzed by E. coli MTHFR may be used to probe mechanistic questions relevant to the overall oxidoreductase reactions.  相似文献   

17.
Folic acid and the methylation of homocysteine by Bacillus subtilis   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes.  相似文献   

18.
Intestinal transport of [3H]folate was studied using everted sacs of rat jejunum. The proximal small intestine transports folate against a concentration gradient by a system which is saturable, pH-dependent, energy-dependent, sodium-dependent, sensitive to temperature, and appears to be a common transport system for folate' compounds. Chromatographic analysis of folate compounds in the serosal compartment after a 60 min incubation with folate in the mucosal medium in sodium phosohate buffer indicated that metabolism of folate to 5-methyltetrahydrofolate was extensive at pH 6.0 and negligible at pH 7.5. The percent conversion of folate to 5-methyltetrahydrofolate at pH 6.0 was reduced by increasing the concentration of folate in the mucosal medium, thus indicating saturation of the reduction and methylation process. These findings indicate that folate transport in rat jejunum occurs by an energy-dependent, carried-mediated system and that both folate transport and intestinal conversion of folate to 5-methyltetrahydrofolate are pH-dependent.  相似文献   

19.
5,10-Methylenetetrahydrofolate (5,10-CH2-H4PteGlu) was identified as a major active reduced folate in rat bile using high-performance liquid chromatography with electrochemical detection (HPLC—ED). The identification of the folate derivative was based on the similarities in the retention-time profiles, electrochemical properties, UV absorption characteristics and demethylenation profiles of the bile folate and the synthetic standard. An HPLC—ED method was developed for the simultaneous determination of reduced folates including 5,10-CH2-H4PteGlu, tetrahydrofolate (H4PteGlu), 10-formyltetrahydrofolate (10-HCO-H4PteGlu) and 5-methyltetrahydrofolate (5-CH3-H4PteGlu) in rat bile. All peaks of the reduced folates in bile were separated using this method with a total retention time of less than 15 min. The detection limit was 0.01 ng/injection for H4PteGlu, 10-HCO-H4PteGlu and 5-CH3-H4PteGlu, and 0.02 ng/injection for 5,10-CH2-H4PteGlu at a signal-to-noise ratio of 3 and an injection volume of 100 μl. Recoveries of synthetic folates from rat bile were higher than 90%. The distribution percentages of 5,10-CH2-H4PteGlu, H4PteGlu, 10-HCO-H4PteGlu and 5-CH3-H4PteGlu in rat bile were 29.6 ± 7.2, 17.7 ± 3.5, 24.4 ± 6.5 and 28.2 ± 7.1%, respectively, and total secretion rate of the bile reduced folates was 1514 ± 663 ng/h (mean ± S.D., n = 9).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号