首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

2.
Tendons are collagenous tissues made of mainly Type I collagen and it has been shown that the major proteoglycans of tendons are decorin and versican. Little is still known about the catabolism of these proteoglycans in tendon. Therefore, the aim of the study was to characterise the proteoglycans including their catabolic products present in uncultured bovine tendon and in the explant cultures of tendon. In this study, the proteoglycans were extracted from the tensile region of deep flexor tendon and isolated by ion-exchange chromatography and after deglycosylation analysed by SDS-polyacrylamide electrophoresis, Western blotting and amino-terminal amino acid sequence analysis. Based on amino acid sequence analysis, approximately 80% of the total proteoglycan core proteins in fresh tendon was decorin. Other species that were detected were biglycan and the large proteoglycans versican (splice variants V(0) and/or V(1)) and aggrecan. Approximately 35% of decorin present in the matrix showed carboxyl-terminal proteolytic processing at a number of specific sites. The analysis of small proteoglycans lost to the medium of tendon explants showed the presence of biglycan and decorin with the intact core protein as well as decorin fragments that contained the amino terminus of the core protein. In addition, two core protein peptides of decorin starting at residues K(171) and D(180) were observed in the matrix and one core protein with an amino-terminal sequence commencing at G(189) was isolated from the culture medium. The majority of the large proteoglycans present in the matrix of tendon were degraded and did not contain the G1 globular domain. Furthermore the aggrecan catabolites present in fresh tendon and lost to the medium of explants were derived from aggrecanase cleavage of the core protein at residues E(373)-A(374), E(1480)-G(1481) and E(1771)-A(1772). The analysis of versican catabolites (splice variants V(0) and/or V(1)) also showed evidence of degradation of the core protein by aggrecanase within the GAG-beta subdomain, as well as cleavage by other proteinase(s) within the GAG-alpha and GAG-beta subdomains of versican (variants V(0) and/or V(2)). Degradation products from the amino terminal region of type XII collagen were also detected in the matrix and medium of tendon explants. This work suggests a prominent role for aggrecanase enzymes in the degradation of aggrecan and to a lesser extent versican. Other unidentified proteinases are also involved in the degradation of versican and small leucine-rich proteoglycans.  相似文献   

3.
Synthesis of proteoglycans by morphologically and chemically distinct regions of bovine flexor tendon was investigated in explant cultures. Proximal regions of the flexor tendon which experience only tensile forces and have low contents of proteoglycans initially exhibited relatively low rates of proteoglycan synthesis but high rates of collagen synthesis. The predominant proteoglycan produced by all proximal explants was of small hydrodynamic size and appeared similar to that extracted from proximal tissue. In contrast, explants derived from the distal tendon region, which experiences frictional and compressive forces in addition to tensile forces, and has a high content of proteoglycans, showed relatively high initial rates of proteoglycan synthesis and lower rates of collagen synthesis. These distal explants produced primarily large proteoglycans on the first day in culture. Turnover of newly synthesized proteoglycans was not detectable in proximal tissue, and was low in distal tissue. Loss of unlabelled proteoglycan from proximal and distal explants was not detected during the 12 days of culture. These observations suggest that the increase in specific types of proteoglycans in regions of tendon subjected to frictional and compressive forces is the result of elevated synthesis rates in this tissue. Two alterations in proteoglycan synthesis occurred during the 12-day culture period. (1) The rate of proteoglycan synthesis by all explants increased with time in culture. (2) The proportion of small proteoglycans synthesized by distal explants increased from 32% of the total proteoglycan produced on day 1, to 80% of that produced on day 12. Explants from proximal tendon continued to produce only small proteoglycans throughout the 12 days in culture. This switch in proteoglycan phenotype, resulting in decreased synthesis of large proteoglycans by the distal tissue, may be due to a lack of compressive forces on the cultured explants.  相似文献   

4.
5.
It is possible that connective tissue growth factor (CTGF) serves as either an independent regulator or a downstream effector of transforming growth factor-beta (TGF-beta) on the proteoglycan synthesis in vascular endothelial cells. Since TGF-beta regulates endothelial proteoglycan synthesis in a cell density-dependent manner, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(35)S]sulfate or (35)S-labeled amino acids in the presence of CTGF, and the labeled proteoglycans were characterized by biochemical techniques. The results indicate that CTGF suppresses the synthesis of biglycan but newly induced that of decorin in the cells when the cell density is low; in addition, no change was observed in the hydrodynamic size and the glycosaminoglycan chain length of these two small chondroitin/dermatan sulfate proteoglycans. The regulation of endothelial proteoglycan synthesis by CTGF is completely different from that by TGF-beta, suggesting that CTGF is not a downstream effector of TGF-beta but an independent regulator in vascular endothelial cells with respect to the proteoglycan synthesis.  相似文献   

6.
Fibrosis is a common pathological feature observed in muscles of patients with Duchenne muscular dystrophy (DMD). Biglycan and decorin are small chondroitin/dermatan sulfate proteoglycans in the muscle extracellular matrix (ECM) that belong to the family of structurally related proteoglycans called small leucine-rich repeat proteins. Decorin is considered an anti-fibrotic agent, preventing the process by blocking TGF-beta activity. There is no information about their expression in DMD patients. We found an increased amount of both proteoglycans in the ECM of skeletal muscle biopsies obtained from DMD patients. Both biglycan and decorin were augmented in the perimysium of muscle tissue, but only decorin increased in the endomysium as seen by immunohistochemical analyses. Fibroblasts were isolated from explants obtained from muscle of DMD patients and the incorporation of radioactive sulfate showed an increased synthesis of both decorin and biglycan in cultured fibroblasts compared to controls. The size of decorin and biglycan synthesized by DMD and control fibroblasts seems to be similar in size and anion charge. These findings show that decorin and biglycan are increased in DMD skeletal muscle and suggest that fibroblasts would be, at least, one source for these proteoglycans likely playing a role in the muscle response to dystrophic cell damage.  相似文献   

7.
Fluoroquinolone antibiotics have been used widely in humans and domestic animals, including horses, because of their broad-spectrum bactericidal activity, and relative safety. The use of fluoroquinolones, however, is not without risk. Tendonitis and spontaneous tendon rupture have been reported in people during or following therapy with fluoroquinolones. We have studied the effects of enrofloxacin, a fluoroquinolone antibiotic used commonly in domestic animals, on tendon cell cultures established from equine superficial digital flexor tendons. Effects on cell proliferation and morphology were studied using cell counting and scanning electron microscopy. Monosaccharide content and composition was determined by gas chromatography-mass spectrometry analysis. Western and Northern blot analyses were utilized to evaluate the synthesis and expression of two proteoglycans, biglycan and decorin. Our data demonstrate that enrofloxacin inhibits cell proliferation, induces morphological changes, decreases total monosacharide content and alters small proteoglycan synthesis at the glycosylation level in equine tendon cell cultures. These effects are more pronounced in juvenile tendon cells than in adult equine tendon cells. We hypothesize that morphological changes and inhibition of cell proliferation are a result of impaired production of biglycan and decorin, proteoglycans involved in fibrillogenesis of collagen, the most important structural component of the tendon of enrofloxacin-treated tendon cells. Our findings suggest that fluoroquinolones should be used with caution in horses, especially in foals.  相似文献   

8.
Transforming growth factor (TGF)-beta is a key cytokine in the pathogenesis of pulmonary fibrosis, and pharmacological interference with TGF-beta can ameliorate the fibrotic tissue response. The small proteoglycans decorin and biglycan are able to bind and inhibit TGF-beta activity in vitro. Although decorin has anti-TGF-beta properties in vivo, little is known about the physiological role of biglycan in vivo. Adenoviral gene transfer was used to overexpress active TGF-beta, decorin, and biglycan in cell culture and in murine lungs. Both proteoglycans were able to interfere with TGF-beta bioactivity in vitro in a dose-dependant manner. In vivo, overexpression of TGF-beta resulted in marked lung fibrosis, which was significantly reduced by concomitant overexpression of decorin. Biglycan, however, had no significant effect on lung fibrosis induced by TGF-beta. The data suggest that differences in tissue distribution are responsible for the different effects on TGF-beta bioactivity in vivo, indicating that decorin, but not biglycan, has potential therapeutic value in fibrotic disorders of the lung.  相似文献   

9.
Fibrin serves as a provisional extracellular matrix (ECM) for arterial smooth muscle cells (ASMC) after vascular injury, yet little is known about the effect of fibrin on ECM remodeling by these cells. To address this question, monkey ASMC were grown on fibrin gels and tissue culture (TC) plastic, and proteoglycan synthesis and accumulation were assessed by radiolabeling. Initial rates of (35)S-sulfate incorporation into proteoglycans were identical for both groups, but increased proteoglycan accumulation was observed in cultures grown for 48 h on fibrin. This increased accumulation on fibrin was due to reduced proteoglycan turnover and retention within the fibrin gel. Decorin and biglycan constituted 40 and 14% of the total proteoglycan in the fibrin gels, whereas their combined contribution was only 12% in control matrices. To explore whether the retention of decorin in fibrin had any influence on the properties of the fibrin gel, ASMC-mediated fibrin contraction assays were performed. Both de novo synthesis of decorin as well as decorin added during polymerization inhibited the ability of the cells to contract fibrin. In contrast, decorin added exogenously to mature fibrin matrices had no effect on fibrin gel contraction. This study illustrates that decorin derived from ASMC selectively accumulates in fibrin and modifies fibrin architecture and mechanical properties. Such an accumulation may influence wound healing and the thrombotic properties of this provisional pro-atherosclerotic ECM.  相似文献   

10.
Proteoglycans (PGs) comprise a group of extracellular matrix macromolecules which play an important role in matrix biology. In this study, normal human skin and gingival fibroblast cultures were incubated with transforming growth factor-beta 1 (TGF-beta 1), and the expression of three PGs, viz. biglycan (PGI), decorin (PGII), and versican (a large fibroblast proteoglycan) was examined. The results indicate that TGF-beta 1 (5 ng/ml) markedly increased the expression of biglycan (up to 24-fold) and versican (up to 6-fold) mRNAs and the enhancement of biglycan expression was coordinate with elevated type I procollagen gene expression in the same cultures. In contrast, the expression of decorin mRNA was markedly (up to approximately 70%) inhibited by TGF-beta 1. The response to TGF-beta 1 was similar in both skin and gingival fibroblasts, although the gingival cells were clearly more responsive to stimulation by TGF-beta 1 with respect to biglycan gene expression. Analysis of 35S-labeled proteoglycans in the culture media of skin and gingival fibroblasts also revealed stimulation of biglycan and versican production, and reduction in decorin production. Quantitation of both [35S]sulfate and [3H]leucine-labeled decorin in cell culture media by immunoprecipitation revealed a 50% reduction in decorin production in cell cultures treated with TGF-beta 1. This TGF-beta 1-elicited reduction was accompanied by an apparent increase in the size of the decorin molecules, although the size of the core protein was not altered, as judged by Western immunoblotting following chondroitinase ABC digestion. Analysis of the proteoglycans in the matrix and membrane fractions also revealed increased amounts of versican in cultures treated with TGF-beta 1. These results indicate differential regulation of PG gene expression in fibroblasts by TGF-beta 1, and these observations emphasize the role of PGs in the extracellular matrix biology and pathology.  相似文献   

11.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   

12.
Asthma is characterized by an airway remodeling process involving altered extracellular matrix deposition such as collagen, fibronectin and proteoglycans. Proteoglycans determine tissue mechanical properties and are involved in many important biological aspects. Not surprisingly, it has been suggested that proteoglycan deposition may alter airway properties in asthma including airway hyperresponsiveness. In chronically inflamed airway tissues, fibroblasts likely represent an activated fibrotic phenotype that contributes to the excessive deposition of different extracellular matrix components. To investigate whether this was the case for proteoglycans, the production of hyaluronan, perlecan, versican, small heparan sulphate proteoglycans (HSPGs), decorin and biglycan was quantified in the culture medium of primary bronchial fibroblast cultures, established from four normal and six asthmatic subjects. Values were further correlated to the airway responsiveness (PC(20) methacholine) of donor subjects. Fibroblasts from subjects with the most hyperresponsive airways produced up to four times more total proteoglycans than cells from subjects with less hyperresponsive or normoresponsive airways. We observed a significant negative correlation between the PC(20) and perlecan, small HSPGs and biglycan, while such correlation was absent for decorin and close to significant for hyaluronan and versican. Altered proteoglycan metabolism by bronchial fibroblasts may contribute to the increased proteoglycan deposition in the bronchial mucosa and to airway hyperresponsiveness characterizing asthma.  相似文献   

13.
Evidence for a functional role for extracellular matrix (ECM) proteins in adipose tissue is demonstrated in dynamic changes in expression of ECM genes during adipocyte differentiation and in obesity. Components of the ECM may regulate adipose cell number expansion by restricting pre-adipocyte proliferation, regulating apoptosis and inhibiting adipogenesis. Although pre-adipocytes express multiple proteoglycans, their role in pre-adipocyte proliferation up to now has remained unknown. The study described here was conducted to characterize roles of small leucine-rich proteoglycans (SLRPs) in adipocyte proliferation. Pre-adipocytes were seeded on plates coated with biglycan and decorin and were allowed to differentiate. In addition, pre-adipocytes were incubated on plates coated with biglycan, decorin, or fibronectin and measurements were made of cell proliferation and apoptosis. We are able to report that SLRPs decorin and biglycan did not affect differentiation of our 3T3-L1 cells; however, biglycan and decorin did reduce proliferation of pre-adipocytes, partly by induction of apoptosis. Furthermore, anti-proliferative capabilities of decorin and biglycan were nullified with removal of GAG side-chains suggesting that the chains played key roles in anti-proliferative effects of the SLRPs. We also found that co-treatment of decorin or biglycan with the proteoglycan fibronectin restored normal proliferation, an indication that multiple ECM proteins may act in concert to regulate overall proliferation rates of pre-adipocytes. These studies indicate that SLRPs may compose a regulatory factor in adipose tissue expansion, through hyperplasia.  相似文献   

14.
Corneal explants with scleral rims were freshly prepared from day 18 chicken embryos and incubated in vitro for 3 h in the presence of various radioactive precursors. Radiolabeled proteoglycans were isolated from the stromal tissue and culture medium for analysis. Two predominant proteoglycans were identified in corneal stroma. One contains dermatan sulfate and the other contains keratan sulfate; a structural analysis of each is reported in the accompanying paper (Midura, R.J., and Hascall, V.C. (1989) J. Biol. Chem. 264, 1423-1430). A minor keratan sulfate proteoglycan distinct from the major form, a small amount of heparan sulfate proteoglycan, and some sulfated glycoproteins were also detected in stromal extracts. The biosynthesis of the dermatan sulfate proteoglycan was stable in vitro and in ovo, whereas that of the major keratan sulfate proteoglycan was stable only in ovo. Various treatments were tried to maintain a high rate of keratan sulfate synthesis with time in culture. Cooling the corneal explants to 5 degrees C was the only treatment that reduced this decline in keratan sulfate synthesis in vitro to any significant extent. Three major proteoglycans were observed in the culture medium. Two were dermatan sulfate proteoglycan and appeared to be mainly derived from the scleral tissue surrounding the corneal explant. The third proteoglycan contained keratan sulfate. It was smaller in size and lower in charge density compared to the keratan sulfate proteoglycan found in the stroma, but both appeared to have similar core protein sizes. It seems likely that this proteoglycan was synthesized in the stroma and secreted into the medium. A small amount of heparan sulfate proteoglycan and some sulfated glycoproteins were also detected in the medium.  相似文献   

15.
Wharton's jelly (WJ) is a myxomatous substance surrounding the blood vessels of the umbilical cord. Proteoglycans (PGs) of Wharton's jelly have not been studied to date therefore it was decided to explore proteoglycan composition of this tissue. Proteoglycans were subjected to dissociative extraction with 4M guanidine hydrochloride containing Triton X-100 and protease inhibitors, purified by Q-Sepharose anion-exchange chromatography and lyophilised. They were analysed by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) before and after treatment with chondroitinase ABC. It was found that 1g of Wharton's jelly contains 2.43+/-0.63mg (n=10) of sulphated glycosaminoglycans (GAGs), reflecting the presence of proteoglycans. The proteoglycans were mainly substituted with chondroitin/dermatan sulphate (DS) chains. The predominant proteoglycan fraction included small proteoglycans with core proteins of 45 and 47kD, immunologically related to decorin (45 and 47kD) and biglycan (45kD). The expression of decorin core proteins was much higher than that of biglycan. Larger proteoglycans (core proteins of 90, 110, 220 and 260kD) were found in lower amounts. The most abundant of them (core protein of 260kD) was immunologically related to versican. Perlecan was not identified in Wharton's jelly. The study shows that Wharton's jelly contains mainly small chondroitin/dermatan sulphate proteoglycans, with decorin strongly predominating over biglycan. We suggest that an intensive expression of decorin is associated with very high content of its ligand, collagen.  相似文献   

16.
Collagen, the main organic component of bone, is used as a coating on titanium implants and as a scaffold material in bone tissue engineering. Surface modifications of titanium which promote osteoblast adhesion, proliferation and synthesis of collagen by osteoblasts are desirable. One biomimetic approach is the coating of titanium with collagen in fibrillar form. Other organic components of bone may be bound to fibrils and exert additional effects. In this study, the collagen types I-III were compared regarding their ability to bind the proteoglycans decorin and biglycan, which are found in bone. More collagen was bound to collagen II fibrils than to those of types I and III. Therefore, titanium surfaces were coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the effect of the proteoglycans on human primary osteoblast behaviour. In addition, the growth factor TGF-beta1 was adsorbed onto surfaces coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the influence of decorin and biglycan on the effect of TGF-beta1 on osteoblasts. Fibril-bound biglycan and decorin influence primary osteoblast behaviour by themselves. The presence of substrate-bound biglycan or decorin influences the effect of TGF-beta1. These results may be important when designing collagen-based coatings or scaffolds for tissue engineering, including those loaded with growth factors.  相似文献   

17.
A culture system was developed to analyze the relationship between proteoglycans and growth factors during corneal injury. Specifically, the effects of transforming growth factor beta-1 (TGF-beta1) and fetal calf serum on proteoglycan synthesis in corneal fibroblasts were examined. Glycosaminoglycan synthesis and sulfation were determined using selective polysaccharidases. Proteoglycan core proteins were analyzed using gel electrophoresis and Western blotting. Cells cultured in 10% dialyzed fetal calf serum exhibited decreased synthesis of more highly sulfated chondroitin sulfate and heparan sulfate compared with cells cultured in 1% dialyzed fetal calf serum. The amount and sulfation of the glycosaminoglycans was not significantly influenced by TGF-beta1. The major proteoglycan species secreted into the media were decorin and perlecan. Decorin was glycanated with chondroitin sulfate. Perlecan was linked to either chondroitin sulfate, heparan sulfate, or both chondroitin sulfate and heparan sulfate. Decorin synthesis was reduced by either TGF-beta1 or serum. At early time points, both TGF-beta1 and serum induced substantial increases in perlecan bearing chondroitin sulfate and/or heparan sulfate chains. In contrast, after extended periods in culture, the amount of perlecan bearing heparan sulfate chains was unaffected by TGF-beta1 and decreased by serum. The levels of perlecan bearing chondroitin sulfate chains were elevated with TGF-beta1 treatment and were decreased with serum. Because both decorin and perlecan bind growth factors and are proposed to modulate their activity, changes in the expression of either of these proteoglycans could substantially affect the cellular response to injury.  相似文献   

18.
In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.2-fold), biglycan (2.0-fold), and perlecan (2.0-fold), whereas decorin mRNA levels decreased to a third of control levels. Strain also increased versican, biglycan, and perlecan core proteins, with a concomitant decrease in decorin core protein. Deformation did not alter the hydrodynamic size of proteoglycans as evidenced by molecular sieve chromatography but increased sulfate incorporation in both chondroitin/dermatan sulfate proteoglycans and heparan sulfate proteoglycans (p < 0.05 for both). Using DNA microarrays, we also identified the gene for the hyaluronan-linking protein TSG6 as mechanically induced in smooth muscle cells. Northern analysis confirmed a 4.0-fold increase in steady state mRNA for TSG6 following deformation. Size exclusion chromatography under associative conditions showed that versican-hyaluronan aggregation was enhanced following deformation. These data demonstrate that mechanical deformation increases specific vascular smooth muscle cell proteoglycan synthesis and aggregation, indicating a highly coordinated extracellular matrix response to biomechanical stimulation.  相似文献   

19.
20.
The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Satellite cells constitute the main source of muscle precursor cells for growth and repair. After skeletal muscle injury, cell-derived signals induce their re-entry into the cell cycle and their migration into the damaged zone, where they proliferate and differentiate into mature myofibers. The surrounding extracellular matrix (ECM) together with inhibitory growth factors, such as transforming growth factor-beta (TGF-beta), also likely play an important role in growth control and muscle differentiation. Decorin, biglycan and betaglycan are proteoglycans that bind TGF-beta during skeletal muscle differentiation. In this paper, we show that the binding of TGF-beta to the receptors TGF-betaRI and-betaRII diminished in a satellite cell-derived cell line during differentiation, in spite of an increase expression of both receptors. In contrast, during the differentiation of decorin-null myoblasts (Dcn null), which lack decorin expression, the binding of TGF-beta to TGF-betaRI and -betaRII increased concomitantly with receptors levels. Both the addition and re-expression of decorin, in these myoblasts, diminished the binding of TGF-beta to its transducing receptors. Similar results were obtained when biglycan was added or over-expressed in Dcn null myoblasts. The binding of TGF-beta to TGF-betaRIII, alternatively known as betaglycan, was also augmented in Dcn null myoblasts and diminished by decorin, biglycan and betaglycan. These results suggest that decorin, biglycan and betaglycan compete for the binding of TGF-beta to its transducing receptors. Transfection studies with the TGF-beta-dependent promoter of the plasminogen activator inhibitor-1, coupled with luciferase, revealed that the addition of each proteoglycan diminished TGF-beta-dependent activity, for both TGF-beta1 and -beta2. The modulation of TGF-beta signaling by ECM proteoglycans diminishing the bio-availability of TGF-beta for its transducing receptors appears to be a feasible mechanism for the attenuation of this inhibitory growth factor during skeletal muscle formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号