首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant vaccinia viruses were constructed and used in conjunction with site-specific antisera to study the coding capacity and detailed expression strategy of the M segment of the Phlebovirus Rift Valley fever virus (RVFV). The M segment could be completely and faithfully expressed in recombinant RVFV-vaccinia virus-infected cells, the gene products apparently being correctly processed and modified in the absence of the RVFV L and S genomic segments. The proteins encoded by the RVFV M segment included, in addition to the viral glycoproteins G2 and G1, two previously uncharacterized polypeptides of 78 and 14 kilodaltons (kDa). By manipulation of RVFV sequences present in the recombinant vaccinia viruses and use of specific antibody reagents, it was found that the 78-kDa protein initiated at the first initiation codon of the open reading frame and encompassed the entire preglycoprotein and glycoprotein G2 coding sequences. The 14-kDa protein appeared to begin from the second in-phase ATG and was composed of only the preglycoprotein sequences. Both viral glycoproteins G2 and G1 could be synthesized and correctly processed in the absence of the 78- and 14-kDa proteins, as well as a large portion of the preglycoprotein sequences. However, the hydrophobic amino acid sequence immediately preceding the mature glycoprotein coding sequences was required for authentic glycoprotein production. The M-segment expression strategy involving aspects of translational initiation and protein processing are discussed. The functional roles of the 78- and 14-kDa proteins remain unclear.  相似文献   

2.
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic bunyavirus of the genus Phlebovirus and a serious human and veterinary pathogen. RVFV contains a three-segmented RNA genome, which is comprised of the large (L), medium (M), and small (S) segments. The proteins that are essential for genome replication are encoded by the L and S segments, whereas the structural glycoproteins are encoded by the M segment. We have produced BHK replicon cell lines (BHK-Rep) that maintain replicating L and S genome segments. Transfection of BHK-Rep cells with a plasmid encoding the structural glycoproteins results in the efficient production of RVFV replicon particles (RRPs). To facilitate monitoring of infection, the NSs gene was replaced with an enhanced green fluorescent protein gene. RRPs are infectious for both mammalian and insect cells but are incapable of autonomous spreading, rendering their application outside biosafety containment completely safe. We demonstrate that a single intramuscular vaccination with RRPs protects mice from a lethal dose of RVFV and show that RRPs can be used for rapid virus neutralization tests that do not require biocontainment facilities. The methods reported here will greatly facilitate vaccine and drug development as well as fundamental studies on RVFV biology. Moreover, it may be possible to develop similar systems for other members of the bunyavirus family as well.  相似文献   

3.
4.
5.
6.
7.
Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed.  相似文献   

8.
Labeaud D 《Future virology》2010,5(6):675-678
Rift Valley fever virus (RVFV) is an important animal and human threat and leads to longstanding morbidity and mortality in susceptible hosts. Since no therapies currently exist to treat Rift Valley fever, it remains a public and animal health priority to develop safe, effective RVFV vaccines (whether for animals, humans, or both) that provide long-term protective immunity. In the evaluated article, Bhardwaj and colleagues describe the creation and testing of two successful vaccine strategies against RVFV, a DNA plasmid vaccine expressing Gn coupled to C3d, and an alpha-virus replicon vaccine expressing Gn protein. Both vaccines elicited strong neutralizing antibody responses, prevented morbidity and mortality in RVFV-challenged mice, and enabled protection of naive mice via passive antibody transfer from vaccinated mice. Both DNA and replicon RVFV vaccines have previously been shown to protect against RVFV challenge, but these results allow for direct comparison of the two methods and evaluation of a combined prime-boost method. The results also highlight the specific humoral and cell-mediated immune responses to vaccination.  相似文献   

9.
Won S  Ikegami T  Peters CJ  Makino S 《Journal of virology》2007,81(24):13335-13345
Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus within the family Bunyaviridae. It can cause severe epidemics among ruminants and fever, myalgia, a hemorrhagic syndrome, and/or encephalitis in humans. The RVFV M segment encodes the NSm and 78-kDa proteins and two major envelope proteins, Gn and Gc. The biological functions of the NSm and 78-kDa proteins are unknown; both proteins are dispensable for viral replication in cell cultures. To determine the biological functions of the NSm and 78-kDa proteins, we generated the mutant virus arMP-12-del21/384, carrying a large deletion in the pre-Gn region of the M segment. Neither NSm nor the 78-kDa protein was synthesized in arMP-12-del21/384-infected cells. Although arMP-12-del21/384 and its parental virus, arMP-12, showed similar growth kinetics and viral RNA and protein accumulation in infected cells, arMP-12-del21/384-infected cells induced extensive cell death and produced larger plaques than did arMP-12-infected cells. arMP-12-del21/384 replication triggered apoptosis, including the cleavage of caspase-3, the cleavage of its downstream substrate, poly(ADP-ribose) polymerase, and activation of the initiator caspases, caspase-8 and -9, earlier in infection than arMP-12. NSm expression in arMP-12-del21/384-infected cells suppressed the severity of caspase-3 activation. Further, NSm protein expression inhibited the staurosporine-induced activation of caspase-8 and -9, demonstrating that other viral proteins were dispensable for NSm's function in inhibiting apoptosis. RVFV NSm protein is the first identified Phlebovirus protein that has an antiapoptotic function.  相似文献   

10.
11.
《Cell》2021,184(20):5163-5178.e24
  1. Download : Download high-res image (105KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
14.
Rift Valley fever virus (RVFV) is a member of the Bunyaviridae virus family (genus Phlebovirus) and is considered to be one of the most important pathogens in Africa, causing viral zoonoses in livestock and humans. Here, we report the characterization of the three-dimensional structural organization of RVFV vaccine strain MP-12 by cryoelectron tomography. Vitrified-hydrated virions were found to be spherical, with an average diameter of 100 nm. The virus glycoproteins formed cylindrical hollow spikes that clustered into distinct capsomeres. In contrast to previous assertions that RVFV is pleomorphic, the structure of RVFV MP-12 was found to be highly ordered. The three-dimensional map was resolved to a resolution of 6.1 nm, and capsomeres were observed to be arranged on the virus surface in an icosahedral lattice with clear T=12 quasisymmetry. All icosahedral symmetry axes were visible in self-rotation functions calculated using the Fourier transform of the RVFV MP-12 tomogram. To the best of our knowledge, a triangulation number of 12 had previously been reported only for Uukuniemi virus, a bunyavirus also within the Phlebovirus genus. The results presented in this study demonstrate that RVFV MP-12 possesses T=12 icosahedral symmetry and suggest that other members of the Phlebovirus genus, as well as of the Bunyaviridae family, may adopt icosahedral symmetry. Knowledge of the virus architecture may provide a structural template to develop vaccines and diagnostics, since no effective anti-RVFV treatments are available for human use.  相似文献   

15.
The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies.  相似文献   

16.
Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting primarily domestic ruminants and humans. Numerous vector species are known or implicated in the transmission of RVFV. The role of mammals in the maintenance of RVFV, and the existence of a wild mammal reservoir in the epidemiologic cycle of RVFV, remain largely unknown. Our objective is to present a detailed review of studies undertaken on RVFV, often associated with wild mammals, with the aim of focusing future research on potential reservoirs of the virus. Natural and experimental infections related to RVFV in several mammalian orders, including Artiodactyla, Chiroptera, Rodentia, Primata (nonhuman), Perissodactyla, Carnivora, Proboscidea, Erinaceomorpha, and Lagomorpha, are reviewed; the first four orders have received the greatest attention. The possible role of wild ruminants, especially African buffalo (Syncerus caffer), is also discussed. Conflicting results have been published concerning rodents but, based on the literature, the likely candidate species include the African genera Arvicanthis and Micaelamys and the widely introduced roof rat (Rattus rattus). Members of the orders Chiroptera and Rodentia should receive greater attention associated with new research programs. For the other orders mentioned above, few data are available. We are unaware of any investigation concerning the orders Afrosoricida and Soricomorpha, which are represented in the geographic area of RVFV and can be abundant. As a first step to resolve the question of wild mammals as a reservoir of RVFV, serologic and virologic surveys should be promoted during epizootic periods to document infected wild animals and, in the case of positive results, extended to interepidemic periods to explore the role of wild animals as possible reservoirs.  相似文献   

17.
18.
<正>Dear Editor,Rift Valley fever(RVF)is an anthropozoonosis caused by Rift Valley fever virus(RVFV).RVFV belongs to the Phlebovirus genus in the family Bunyaviridae,which is circulating among ruminants.Human infection with RVFV is generally asymptomatic,however,minority of patients develop severe RVF diseases like encephalitis or  相似文献   

19.
20.
Rift Valley fever viruses carrying mutations of the M gene preglycoprotein region, one lacking NSm protein expression, one lacking 78-kDa protein expression, and one lacking expression of both proteins, were compared in cell culture. All of the mutants and their parent virus produced plaques with similar sizes and morphologies in Vero E6 cells and had similar growth kinetics in Vero, C6/36, and MRC5 cells, demonstrating that the NSm and 78-kDa proteins were not needed for the virus to replicate efficiently in cell culture. A competition-propagation assay revealed that the parental virus was slightly more fit than the mutant virus lacking expression of both proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号