首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This paper studies a four dimensional system of time-autonomous ordinary differential equations which models the interaction of two diploid, diallelic populations with overlapping generations. The variables are two population densities and an allele frequency in each of the populations. For single species models, the existence of periodic solutions requires that the genotype fitness functions be both frequency and density dependent. But, for two species exhibiting a predator-prey interaction, two examples are presented where there exists asymptotically stable cycles with fitness functions only density dependent. In the first example, the Hopf bifurcation theorem is used on a two parameter, polynomial vector field. The second example has a Michaelis-Menten or Holling term for the interaction between predator and prey; and, for this example, the existence and uniqueness of limit cycles for a wide range of parameter values has been established in the literature.  相似文献   

2.
We study the properties of a n2-dimensional Lotka-Volterra system describing competing species that include behaviorally adaptive abilities. We indicate as behavioral adaptation a mechanism, based on a kind of learning, which is not viewed in the evolutionary sense but is intended to occur over shorter time scales. We consider a competitive adaptive n species Lotka-Volterra system, n > or = 3, in which one species is made ecologically differentiated with respect to the others by carrying capacity and intrinsic growth rate. The symmetry properties of the system and the existence of a certain class of invariant subspaces allow the introduction of a 7-dimensional reduced model, where n appears as a parameter, which gives full account of existence and stability of equilibria in the complete system. The reduced model is effective also in describing the time-dependent regimes for a large range of parameter values. The case in which one species has a strong ecological advantage (i.e. with a carrying capacity higher than the others), but with a varying growth rate, has been analyzed in detail, and time-dependent behaviors have been investigated in the case of adaptive competition among four species. Relevant questions, as species survival/exclusion, are addressed focusing on the role of adaptation. Interesting forms of species coexistence are found (i.e. competitive stable equilibria, periodic oscillations, strange attractors).  相似文献   

3.
A mathematical model of the spatio-temporal dynamics of a two host, two parasitoid system is presented. There is a coupling of the four species through parasitism of both hosts by one of the parasitoids. The model comprises a system of four reaction-diffusion equations. The underlying system of ordinary differential equations, modelling the host-parasitoid population dynamics, has a unique positive steady state and is shown to be capable of undergoing Hopf bifurcations, leading to limit cycle kinetics which give rise to oscillatory temporal dynamics. The stability of the positive steady state has a fundamental impact on the spatio-temporal dynamics: stable travelling waves of parasitoid invasion exhibit increasingly irregular periodic travelling wave behaviour when key parameter values are increased beyond their Hopf bifurcation point. These irregular periodic travelling waves give rise to heterogeneous spatio-temporal patterns of host and parasitoid abundance. The generation of heterogeneous patterns has ecological implications and the concepts of temporary host refuge and niche formation are considered.  相似文献   

4.
 A predator–prey interaction model based on a system of differential equations with temperature-dependent parameters chosen appropriately for a mite interaction on apple trees is analyzed to determine how the type of functional response influences bifurcation and stability behavior. Instances of type I, II, III, and IV functional responses are considered, the last of which incorporates prey interference with predation. It is shown that the model systems with the type I, II, and III functional responses exhibit qualitatively similar bifurcation and stability behavior over the interval of definition of the temperature parameter. Similar behavior is found in the system with the type IV functional response at low levels of prey interference. Higher levels of interference are destabilizing, as illustrated by the prevalence of bistability and by the presence of three attractors for some values of the model parameters. All four systems are capable of modeling population oscillations and outbreaks. Received 12 March 1996; received in revised form 25 October 1996  相似文献   

5.
The discrete Rosenzweig model   总被引:1,自引:0,他引:1  
Discrete time versions of the Rosenweig predator-prey model are studied by analytic and numerical methods. The interaction of the Hopf bifurcation leading to periodic orbits and the period-doubling bifurcation is investigated. It is shown that for certain choices of the parameters there is stable coexistence of both species together with a local attractor at which the prey is absent.  相似文献   

6.
Many theoretical studies in biological and physical sciences consider the dynamical behavior of ann-dimensional ordinary differential equation that contains a large number of independent parameters. A frequently asked question is, are there permissible parameter sets that result in periodic or chaotic behavior? The large number of distinct parameters often limits the feasibility of trial and error calculations. The large dimension and nonlinearity of the system make application of analytic methods at best difficult and at worst effectively impossible. It is shown here that a computational search for parameter-dependent transitions of attractor topology can be effected by constrained optimization of quantitative measures of dynamical behavior (Hurwitz polynomials, Floquet coefficients, Lyapunov exponents and correlation dimension). As an example, we examine a three-dimensional nonlinear ordinary differential equation containing seven parameters that was constructed by Goldbeter and Segel to model periodic synthesis of cyclic AMP inDictyostelium. A search for bifurcations to periodic solutions is made by minimizing Hurwitz coefficients subject to parameter constraints. By comparing four optimization algorithms, the defects and advantages of the procedure are identified. It is also argued that it may be possible to use this characterization of dynamics to construct optimal responses to dynamical diseases (those disorders that result from parameter-dependent bifurcations in physiological control systems).  相似文献   

7.
Single species difference population models can show complex dynamics such as periodicity and chaos under certain circumstances, but usually only when rates of intrinsic population growth or other life history parameter are unrealistically high. Single species models with Allee effects (positive density dependence at low density) have also been shown to exhibit complex dynamics when combined with over-compensatory density dependence or a narrow fertility window. Here we present a simple two-stage model with Allee effects which shows large amplitude periodic fluctuations for some initial conditions, without these requirements. Periodicity arises out of a tension between the critical equilibrium of each stage, i.e. when the initial population vector is such that the adult stage is above the critical value, while the juvenile stage is below the critical value. Within this area of parameter space, the range of initial conditions giving rise to periodic dynamics is driven mainly by adult mortality rates. Periodic dynamics become more important as adult mortality increases up to a certain point, after which periodic dynamics are replaced by extinction. This model has more realistic life history parameter values than most 'chaotic' models. Conditions for periodic dynamics might arise in some marine species which are exploited (high adult mortality) leading to recruitment limitation (low juvenile density) and might be an additional source of extinction risk.  相似文献   

8.
A theoretical study is made on a chemical reaction system catalyzed by an allosteric protein, especially on its behavior in far-from-equilibrium situations. The reaction system, which was introduced in a previous paper, consists of two chemical species, S and P, and an allosteric enzyme, E, which catalyzes the reaction of interconversion between them. This system is kept far-from-equilibrium by an interaction with its environment. This interaction is characterized by four parameters. For certain values of the parameters, the system was previously shown to have multiple steady states. In the present paper it is shown that a sustained oscillation takes place in a certain region of the control-parameter space. On one part of the boundary of this region, the system undergoes a discontinuous transition from a steady state to a state oscillating with finite amplitude, while on the other part of the boundary the amplitude of oscillation is vanishingly small right after the transition. It is also shown that this system exhibits a threshold phenomenon. A few possible mechanisms are discussed by which the assumed interaction of the system with its environment can be realized.  相似文献   

9.
A class of population models is considered in which the parameters such as fecundity, mortality and interaction coefficients are assumed to be age-dependent. Conditions for the existence, stability and global attractivity of steady-state and periodic solutions are derived. The dependence of these solutions on the maturation periods is analyzed. These results are applied to specific single and multiple population models. It is shown that periodic solutions cannot occur in a general class of single population age-dependent models. Conditions are derived that determine whether increasing the maturation period has a stabilizing effect. In specific cases, it is shown that any number of switches in stability can occur as the maturation period is increased. An example is given of predator-prey model where each one of these stability switches corresponds to a stable steady state losing its stability via a Hopf bifurcation to a periodic solution and regaining its stability upon further increase of the maturation period.  相似文献   

10.
Inferior olive neurons (IONs) have rich dynamics and can exhibit stable, unstable, periodic, and even chaotic trajectories. This paper presents an analysis of bifurcation of periodic orbits of an ION when its two key parameters (a, μ) are varied in a two-dimensional plane. The parameter a describes the shape of the parabolic nonlinearity in the model and μ is the extracellular stimulus. The four-dimensional ION model considered here is a cascade connection of two subsystems (S(a) and S(b)). The parameter plane (a - μ) is delineated into several subregions. The ION has distinct orbit structure and stability property in each subregion. It is shown that the subsystem S(a) or S(b) undergoes supercritical Poincare-Andronov-Hopf (PAH) bifurcation at a critical value μ(c)(a) of the extracellular stimulus and periodic orbits of the neuron are born. Based on the center manifold theory, the existence of periodic orbits in the asymptotically stable S(a), when the subsystem S(b) undergoes PAH bifurcation, is established. In such a case, both subsystems exhibit periodic orbits. Interestingly when S(b) is under PAH bifurcation and S(a) is unstable, the trajectory of S(a) exhibits periodic bursting, interrupted by periods of quiescence. The bifurcation analysis is followed by the design of (i) a linear first-order filter and (ii) a nonlinear control system for the synchronization of IONs. The first controller uses a single output of each ION, but the nonlinear control system uses two state variables for feedback. The open-loop and closed-loop responses are presented which show bifurcation of orbits and synchronization of oscillating neurons.  相似文献   

11.
A chemostat model of three species of microorganisms competing for three essential, growth-limiting nutrients is considered. J. Husiman and F.J. Weissing [Nature 402 (1999) 407] show numerically that this model can generate periodic oscillations. The present contribution is concerned with rigorous analysis regarding the existence of periodic oscillations in this model. Our analysis is based on the following observation made by Huisman and Weissing: there is a cyclic replacement of species, if each species becomes limited by the resource for which it is the intermediate competitor. Using a permanence theory, an index theory, and a Poincaré-Bendixson theory for three-dimensional competitive systems, we analytically succeed to give sufficient conditions for the existence of periodic orbits in the limit sets in this model. The results in this paper suggest that with a wide range of parameter values, sustained periodic oscillations of species abundances for the model are possible, without involving external disturbances. Our results also suggest that competition is not necessarily destructive, i.e., in the case of existence of sustained periodic oscillations, if one of three competitors is absent, one of the other two rivals cannot survive.  相似文献   

12.
A technique is discussed for locating the Hopf bifurcation of an n-dimensional system of delay differential equations which arises from a model for control of protein biosynthesis. Certain parameter values are shown to allow a Hopf bifurcation to periodic orbits. At the Hopf bifurcation the periodic orbits are shown to be stable either analytically or numerically depending on the parameter values.On leave from North Carolina State University.Supported in part by N.S.F. Grant # MCS 81-02828  相似文献   

13.
We show the existence of a periodic solution in which four species coexist in competition for three essential resources in the standard model of resource competition. By assuming that species i is limited by resource i for each i near the positive equilibrium, and that the matrix of contents of resources in species is a combination of cyclic matrix and a symmetric matrix, we obtain an asymptotically stable periodic solution of three species on three resources via Hopf bifurcation. A simple bifurcation argument is then employed which allows us to add a fourth species. In principle, the argument can be continued to obtain a periodic solution adding one new species at a time so long as asymptotic stability can be assured at each step. Numerical simulations are provided to illustrate our analytical results. The results of this paper suggest that competition can generate coexistence of species in the form of periodic cycles, and that the number of coexisting species can exceed the number of resources in a constant and homogeneous environment.  相似文献   

14.
Stochastic component, inevitable in biological systems, makes problematic the estimation of the model parameters from a single sequence of measurements, despite the complete knowledge of the system. We studied the problem of parameter estimation using individual-based computer simulations of a 'Lotka-Volterra world'. Two kinds (species) of particles--X (preys) and Y (predators)--moved on a sphere according to deterministic rules and at the collision (interaction) of X and Y the particle X was changed to a new particle Y. Birth of preys and death of predators were simulated by addition of X and removal of Y, respectively, according to exponential probability distributions. With this arrangement of the system, the numbers of particles of each kind might be described by the Lotka-Volterra equations. The simulations of the system with low (200-400 particles on average) number of individuals showed unstable oscillations of the population size. In some simulation runs one of the species became extinct. Nevertheless, the oscillations had some generic properties (e.g. mean, in one simulation run, oscillation period, mean ratio of the amplitudes of the consecutive maxima of X and Y numbers, etc.) characteristic for the solutions of the Lotka-Volterra equations. This observation made it possible to estimate the four parameters of the Lotka-Volterra model with high accuracy and good precision. The estimation was performed using the integral form of the Lotka-Volterra equations and two parameter linear regression for each oscillation cycle separately. We conclude that in spite of the irregular time course of the number of individuals in each population due to stochastic intraspecies component, the generic features of the simulated system evolution can provide enough information for quantitative estimation of the system parameters.  相似文献   

15.
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.  相似文献   

16.
Postnatal growth in birds is traditionally modelled by fitting three‐parameter models, namely the logistic, the Gompertz, or the von Bertalanffy models. The purpose of this paper is to address the utility of the Unified‐Richards (U‐Richards) model. We draw attention to two forms of the U‐Richards and lay down a set of recommendations for the analysis of bird growth, in order to make this model and the methods more accessible. We examine the behaviour of the four parameters in each model form and the four derived measurements, and we show that all are easy to interpret, and that each parameter controls a single curve characteristic. The two parameters that control the inflection point, enable us to compare its placement in two dimensions, 1) inflection value (mass or length at inflection) and 2) inflection time (time since hatching), between data sets (e.g. between biometrics or between species). We also show how the parameter controlling growth rate directly presents us with the relative growth rate at inflection, and we demonstrate how one can compare growth rates across data sets. The three traditional models, where the inflection value is fixed (to a specific percentage of the upper asymptote), provide incompatible growth‐rate coefficients. One of the two forms of the U‐Richards model makes it possible to fix not only the upper asymptote (adult value), but also the intersection with the y‐axis (hatching value). Fitting the new model forms to data validates the usefulness of interpreting the inflection placement in addition to the growth rate. It also illustrated the advantages and limitations of constraining the upper asymptote (adult value) and the y‐axis intersection (hatching value) to fixed values. We show that the U‐Richards model can successfully replace some of the commonly used growth models, and we advocate replacing these with the U‐Richards when modelling bird growth.  相似文献   

17.
Two species competition in a periodic environment   总被引:9,自引:0,他引:9  
The classical Lotka-Volterra equations for two competing species have constant coefficients. In this paper these equations are studied under the assumption that the coefficients are periodic functions of a common period. As a generalization of the existence theory for equilibria in the constant coefficient case, it is shown that there exists a branch of positive periodic solutions which connects (i.e. bifurcates from) the two nontrivial periodic solutions lying on the coordinate axes. This branch exists for a finite interval or spectrum of bifurcation parameter values (the bifurcation parameter being the average of the net inherent growth rate of one species). The stability of these periodic solutions is studied and is related to the theory of competitive exclusion. A specific example of independent ecological interest is examined by means of which it is shown under what circumstances two species, which could not coexist in a constant environment, can coexist in a limit cycle fashion when subjected to suitable periodic harvesting or removal rates.Research supported by National Science Foundation Grant No. MCS-7901307  相似文献   

18.
Summary For a general multiple loop feedback inhibition system in which the end product can inhibit any or all of the intermediate reactions it is shown that biologically significant behaviour is always confined to a bounded region of reaction space containing a unique equilibrium. By explicit construction of a Liapunov function for the general n dimensional differential equation it is shown that some values of reaction parameters cause the concentration vector to approach the equilibrium asymptotically for all physically realizable initial conditions. As the parameter values change, periodic solutions can appear within the bounded region. Some information about these periodic solutions can be obtained from the Hopf bifurcation theorem. Alternatively, if specific parameter values are known a numerical method can be used to find periodic solutions and determine their stability by locating a zero of the displacement map. The single loop Goodwin oscillator is analysed in detail. The methods are then used to treat an oscillator with two feedback loops and it is found that oscillations are possible even if both Hill coefficients are equal to one.  相似文献   

19.
The paper is devoted to the study of discrete time and continuous space models with nonlocal resource competition and periodic boundary conditions. We consider generalizations of logistic and Ricker's equations as intraspecific resource competition models with symmetric nonlocal dispersal and interaction terms. Both interaction and dispersal are modeled using convolution integrals, each of which has a parameter describing the range of nonlocality. It is shown that the spatially homogeneous equilibrium of these models becomes unstable for some kernel functions and parameter values by performing a linear stability analysis. To be able to further analyze the behavior of solutions to the models near the stability boundary, weakly nonlinear analysis, a well-known method for continuous time systems, is employed. We obtain Stuart–Landau type equations and give their parameters in terms of Fourier transforms of the kernels. This analysis allows us to study the change in amplitudes of the solutions with respect to ranges of nonlocalities of two symmetric kernel functions. Our calculations indicate that supercritical bifurcations occur near stability boundary for uniform kernel functions. We also verify these results numerically for both models.  相似文献   

20.
The effects of spatial movements of infected and susceptible individuals on disease dynamics is not well understood. Empirical studies on the spatial spread of disease and behaviour of infected individuals are few and theoretical studies may be useful to explore different scenarios. Hence due to lack of detail in empirical studies, theoretical models have become necessary tools in investigating the disease influence in host-pathogen systems. In this paper we developed and analysed a spatially explicit model of two interacting social groups of animals of the same species. We investigated how the movement scenarios of susceptible and infected individuals together with the between-group contact parameter affect the survival rate of susceptible individuals in each group. This work can easily be applied to various host-pathogen systems. We define bounds on the number of susceptibles which avoid infection once the disease has died out as a function of the initial conditions and other model parameters. For example, once disease has passed through the populations, a larger diffusion coefficient for each group can result in higher population levels when there is no between-group interaction but in lower levels when there is between-group interaction. Numerical simulations are used to demonstrate these bounds and behaviours and to describe the different outcomes in ecological terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号