共查询到20条相似文献,搜索用时 15 毫秒
1.
Varda Kagan-Zur Denise M. Tieman S. Jean Marlow Avtar K. Handa 《Plant molecular biology》1995,29(6):1101-1110
The effects of extended heat stress on polygalacturonase (PG; EC 3.2.1.15) and pectin methylesterase (PME; EC 3.1.1.11) gene expression at mRNA, protein and activity levels in ripening tomato fruits were investigated. Steady state levels of PG mRNA declined at temperatures of 27°C and above, and a marked reduction in PG protein and activity was observed at temperatures of 32°C and above. Exogenous ethylene treatment did not reverse heat stress-induced inhibition of PG gene expression. Transfer of heat-stressed fruits to 20°C partly restored PG mRNA accumulation, but the rate of PG mRNA accumulation declined exponentially with duration of heat stress. Heat stress-induced inhibition of PME mRNA accumulation was recoverable even after 14 days of heat stress. In fruits held at 34°C, both PG and PME protein and activity continued to accumulate for about 4 days, but thereafter PG protein and activity declined while little change was observed in PME protein and activity. In spite of increases in mRNA levels of both PG and PME during the recovery of heat-stressed fruit at 20°C, levels of PG protein and activity declined in fruits heat-stressed for four or more days while PME protein and activity levels remained unchanged. Collectively, these data suggest that PG gene expression is being gradually and irreversibly shut off during heat stress, while PME gene expression is much less sensitive to heat stress. 相似文献
2.
Polyamine levels in pollinated and auxin-induced fruit of tomato (Lycopersicon esculentum) during development 总被引:1,自引:0,他引:1
Marcos Egea-Cortines Ephraim Coben Shoshana Arad Nello Bagni Yosef Mizrahi 《Physiologia plantarum》1993,87(1):14-20
The changes taking place during fruit development in the concentration of the 3 polyamine fractions, i.e. free, perchloric acid-soluble conjugates and perchloric acid-insoluble bound polyamines, were analyzed in tomato fruits ( Lycopersicon esculentum Mill, cv. F121) induced to set by either pollination or auxin application. Before the onset of cell division, total polyamines were 50% higher in auxin-treated fruits than in pollinated ones, most of the polyamines being found as perchloric acid-soluble conjugates in both fruit set treatments. At the onset the level of polyamines in both fruit types was 100 times higher than during cell expansion or ripening. The highest polyamine found during cell division was perchloric acid-soluble conjugated spermidine in both fruit set treatments. After cell division, polyamine concentration was similar in both fruit set treatments. The concentration of polyamines in the jelly was similar in pollinated and auxin-induced fruits during cell expansion but not during ripening. At the onset of ripening there was an increase of one order of magnitude in the concentration of perchloric acid-insoluble bound putrescine in the jelly of pollinated fruits. Polyamines were more than 5-fold higher in unpollinated ovaries than in fruits induced to set by either pollination or auxins. It is suggested that pollinated and parthenocarpic fruits differ in their polyamine metabolism during the initial stages of development, but not after cell division. It is also suggested that polyamines undergo rapid turnover during cell division. Perchloric acid-insoluble bound putrescine might play a role in seed formation in tomatoes. 相似文献
3.
Properties of proton and sugar transport at the tonoplast of tomato (Lycopersicon esculentum) fruit 总被引:1,自引:0,他引:1
Tonoplast vesicles were isolated from tomato (Lycopersicon esculentum Mill.) fruit pericarp and purified on a discontinuous sucrose gradient. ATPase activity was inhibited by nitrate and bafilomycin A1 but was insensitive to vanadate and azide. PPase hydrolytic activity was inhibited by NaF but was insensitive to nitrate, bafilomycin A1 vanadate and azide. Kimetic studies of PPase activity gave an apparent Km, for PP3 of 18 μM. Identical distributions of bafilomycin- and NO3-sensitive ATPase activities within continuous sucrose density gradients, confirmed that bafilomycin-sensitive ATPase activity is a suitable marker for the tonoplast. By comparing the distribution of bafilomycin-sensitive ATPase activity with that of PPase activity, it was possible to locate the PPase enzyme exclusively at the tonoplast. The apparent density of the tonoplast did not change during fruit development. Measurements of tonoplast PPase and ATPase activities during fruit development over a 35-day period revealed an 80% reduction in PPase specific activity and a small decrease in ATPase specific activity. ATP- and PP1-dependent ΔpH generation was measured by the quenching of quinacrine fluorescence in tonoplast vesicles prepared on a discontinuous Dextran gradient. No H+ efflux was detected on the addition of sucrose to energized vesicles. Therefore a H+/sucrose antiport may not be the mechanism of sucrose uptake at the tomato fruit tonoplast. Similar results were obtained with glucose, fructose and sorbitol. The lack of ATP (or PP1) stimulation of [14C]-sucrose uptake also suggested that an antiport was not involved. Initial uptake rates of radiolabelled glucose and fructose were almost double that for sucrose. The inhibition of hexose uptake by p-chloromercuribenzene sulphonate (PCMBS) implicated the involvement of a carrier. Therefore storage of hexose in the tomato fruit vacuole and maintenance of a downhill sucrose concentration gradient into sink cells is likely to be regulated by the activity of sucrose metabolizing enzymes, rather than by energy-requiring uptake mechanisms at the tonoplast. 相似文献
4.
The entire senescence period, including ripening, is characterized in cherry tomato ( Lycopersicon esculentum Mill. var. cerasiforme Alef.) by two successive changes in overall polar lipid content. The rise in respiration of the fruit in the climacteric phase is accompanied by a large increase in lipids, notably phospholipids, such as phosphatidylcholine and phosphatidic acid. This suggests the coexistence of anabolic and catabolic processes in this first period. At the degreening stage of the fruit, decreased levels of monogalactosyldiacylglycerol and the disappearance of trigalactosyldiacylglycerol may indicate some degradation of the chloroplast compartment. Following a respiratory upsurge, a sudden breakdown of total lipids occurs concomitantly with maximal ethylene production. This breakdown is essentially caused by a parallel decrease in the amounts of phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid and also phosphatidylglycerol. However, in the cherry tomato, lipid peroxidation, evaluated by alteration of fatty acid distribution, seems insufficient to account for the ethylene peak. 相似文献
5.
The role of Cx -cellulase (EC 3.2.1.4) in fruit ripening and softening is unknown. In the present study, avocado ( Persea americana ) fruit, a rich source of Cx -cellulase, were examined to determine if the enzyme plays a role in ripening-related hemicellulose metabolism. Hemicelluloses (4 M alkali-soluble) from avocado fruit exhibited a very broad distribution of polymer sizes and an overall decrease in Mr during ripening. Polymers affected were primarily those of large Mr (relative molecular mass). The characteristic total hemicellulose Mr distribution and changes with ripening were also evident for xyloglucan (XG), a putative substrate for avocado Cx -cellulase. Hydrolytic activity toward hemicelluloses from preripe fruit was detected in crude buffer-soluble protein extracts derived from ripe avocado mesocarp tissue. XG was also degraded, and in a pattern similar to that observed during ripening. Purified Cx -cellulase also exhibited activity against specific components of isolated hemicelluloses; however, in contrast to the crude protein. Cx -cellulase alone was without influence on the Mr distribution of avocado XG. Protein depleted of Cx -cellulase was capable of moderate XG depolymerization. We conclude from the present studies that the enzyme Cx -cellulase is not involved in the ripening-related depolymerization of XG in avocado fruit. 相似文献
6.
Changes in gene expression during foliar senescence and fruit ripening in tomato (Lycopersicon esculentum Mill.) were examined using in-vitro translation of isolated RNA and hybridization against cDNA clones.During the period of chlorophyll loss in leaves, changes occurred in mRNA in-vitro translation products, with some being reduced in prevalence, whilst others increased. Some of the translation products which changed in abundance had similar molecular weights to those known to increase during tomato fruit ripening. By testing RNA from senescing leaves against a tomato fruit ripening-related cDNA library, seven cDNA clones were identified for mRNAs whose prevalence increased during both ripening and leaf senescence. Using dot hybridization, the pattern of expression of the mRNAs corresponding to the seven clones was examined. Maximal expression of the majority of the mRNAs coincided with the time of greatest ethylene production, in both leaves and fruit. Treatment of mature green leaves or unripe fruit with the ethylene antagonist silver thiosulphate prevented the onset of senescence or ripening, and the expression of five of the seven ripening- and senescence-related genes.The results indicate that senescence and ripening in tomato involve the expression of related genes, and that ethylene may be an important factor in controlling their expression.Abbreviations cDNA
copy-DNA
- MW
molecular weight
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulphate 相似文献
7.
Saladié M Rose JK Cosgrove DJ Catalá C 《The Plant journal : for cell and molecular biology》2006,47(2):282-295
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall-modifying enzymes that align within three or four distinct phylogenetic subgroups. One explanation for this grouping is association with different enzymic modes of action, as XTHs can have xyloglucan endotransglucosylase (XET) or endohydrolase (XEH) activities. While Group 1 and 2 XTHs predominantly exhibit XET activity, to date the activity of only one member of Group 3 has been reported: nasturtium TmXH1, which has a highly specialized function and hydrolyses seed-storage xyloglucan rather than modifying cell wall structure. Tomato fruit ripening was selected as a model to test the hypothesis that preferential XEH activity might be a defining characteristic of Group 3 XTHs, which would be expressed during processes where net xyloglucan depolymerization occurs. Database searches identified 25 tomato XTHs, and one gene (SlXTH5) was of particular interest as it aligned within Group 3 and was expressed abundantly during ripening. Recombinant SlXTH5 protein acted primarily as a transglucosylase in vitro and depolymerized xyloglucan more rapidly in the presence than in the absence of xyloglucan oligosaccharides (XGOs), indicative of XET activity. Thus, there is no correlation between the XTH phylogenetic grouping and the preferential enzymic activities (XET or XEH) of the proteins in those groups. Similar analyses of SlXTH2, a Group 2 tomato XTH, and nasturtium seed TmXTH1 revealed a spectrum of modes of action, suggesting that all XTHs have the capacity to function in both modes. The biomechanical properties of plant walls were unaffected by incubation with SlXTH5, with or without XGOs, suggesting that XTHs do not represent primary cell wall-loosening agents. The possible roles of SlXTH5 in vivo are discussed. 相似文献
8.
Shirin Roohigohar Peter J. Prentis Anthony R. Clarke 《Journal of Applied Entomology》2020,144(9):797-805
In studies of frugivorous tephritids, determining when offspring (i.e. egg and three larval instars) mortality occurs within the fruit can greatly improve the mechanistic understanding of the fly/host interaction. Previous research has demonstrated that the Queensland fruit fly, Bactrocera tryoni, has differential offspring performance in two tomato cultivars Cherry and Roma, but when juvenile mortality was occurring was not determined. We examined B. tryoni egg and larval survival in three different ripening stages (immature-green (IG), colour-break (CB) and fully-ripe (FR)) of Cherry and Roma tomato cultivars through destructive fruit sampling at 72 and 120 hr for eggs, and 48 (1st instar), 96 (2nd instar) and 120 hr (3rd instar) after fruit inoculation with neonates for larvae. Cultivar and ripening stage had no significant effect on egg survival, nor larval survival at 48 hr: the overall percentage of egg survival was at least 80% across all treatments, while 1st-instar larval was less than 52% across all treatments. In immature-green tomatoes of both varieties, nearly all mortality occurred during the first and second instars, but at 96 and 120 hr, there were significant interaction effects between cultivar and ripening stage on larval survival. In both colour-break Cherry and Roma tomatoes, there was significant larval mortality between 96 and 120 hr. However, in fully-ripe Cherry, no further significant larval mortality happened after 48 hr, while in fully-ripe Roma significant larval mortality occurred between the first and second larval instars but not thereafter. The difference in timing of larval mortality with ripening stage provides indirect evidence of active fruit defence which is strongest in immature-green fruit, less in colour-break fruit and absent in fully-ripe fruit. 相似文献
9.
Iso-accepting forms of tRNAmet, tRNAleu, tRNAlys, and tRNAtyr were isolated from combined walls and septa of tomato fruits at 5 consecutive stages of ethylene induced ripening. Changes in the relative amount of some tRNAleu and tRNAlys were discerned 10hr after exposure to ethylene. Individual patterns of change for each of several iso-acceptor tRNAs were evident throughout the ripening sequence. Maximal changes were: tRNAlys, ?66.3%; tRNAleu, ?24.8%; and tRNAmet, +26.7%. 相似文献
10.
11.
C. Douglas Boyette Robert E. Hoagland Hamed K. Abbas 《Biocontrol Science and Technology》2007,17(2):171-178
An isolate of the fungus Myrothecium verrucaria was evaluated for its biocontrol potential against common purslane, horse purslane, spotted spurge, and prostrate spurge, all serious weed pests in commercial tomato fields in the southeastern US. In greenhouse and field tests, M. verrucaria was highly virulent against these weeds when applied as conidial sprays formulated in 0.2% Silwet L-77 surfactant, even in the absence of dew. In field test plots naturally infested with these weeds, seedlings in the two-to-three leaf growth stage treated with M. verrucaria at 2×107 conidia mL-1 in 0.2% Silwet, exhibited leaf and stem necrosis within 24 h following inoculation, with mortality occurring within 96 h. After 7 days, M. verrucaria had killed 90-95% of both purslane species and 85-95% of both spurge species. Tomatoes that were transplanted into plots treated with M. verrucaria remained healthy and vigorous throughout the growing season. Since M. verrucaria effectively controlled several common weeds under field conditions, this fungus appears to have potential as an effective bioherbicide for pre-plant weed control in production systems with transplanted tomato. 相似文献
12.
In order to better understand the effects of heavy metals on the growth of plants, we decided to perform recovering experiments by following both chemical and physiological parameters in cadmium pre-stressed tomato seedlings after cadmium had been removed from the nutrient solution. The work shows that cadmium suppression results in resumption of growth activity. The biomass of leaves and stems rose steadily. The increase in root biomass exceeded those of leaves and stems. At the same time, nitrate content was increased to reach the level obtained with unstressed controls. In all the organs studied, the activities of the enzymes involved in the anabolic nitrogen primary assimilation pathways (nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) soared after that cadmium had been removed. While NAD(+)-dependent glutamate dehydrogenase (GDH-NAD+) activity also rose progressively during the recovering time, the cognate NADH-dependent glutamate dehydrogenase (GDH-NADH) activity decreased. This result allows us to propose that the ammonia produced by the stress-induced protein catabolism is detoxified and re-assimilated by the GDH-NADH isoenzyme. On the basis of these results, we will discuss the ability of the plant to dilute the effects of pollutants during the recovering period. An important outcome of this work is that a transient contamination of the culture medium by pollutants is not necessarily followed by a significant depreciation in product yield or quality. 相似文献
13.
Dutra ES Dias CD de Araújo BC Castro AJ Nepomuceno JC 《Genetics and molecular biology》2009,32(1):133-137
The consumption of organic tomatoes (ORTs) reduces the risk of harmful effects to humans and the environment caused by exposure to toxic agrochemicals. In this study, we used the somatic mutation and recombination test (SMART) of wing spots in Drosophila melanogaster to evaluate the genotoxicity of ORT and the effect of cotreatment with ORT on the genotoxicity of Doxorubicin® (DXR, a cancer chemotherapeutic agent) that is mediated by free radical formation. Standard (ST) cross larvae were treated chronically with solutions containing 25%, 50% or 100% of an aqueous extract of ORT, in the absence and presence of DXR (0.125 mg/mL), and the number of mutant spots on the wings of emergent flies was counted. ORT alone was not genotoxic but enhanced the toxicity of DXR when administered concomitantly with DXR. The ORT-enhanced frequency of spots induced by DXR may have resulted from the interaction of ORT with the enzymatic systems that catalyze the metabolic detoxification of this drug. 相似文献
14.
The brassinosteroid, 24-epibrassinolide, caused observable inhibition of the growth of aseptically-cultured excised tomato ( Lycopersicon esculentum Mill. cv. Best of All) roots at a concentration of 0.01 μ M . Root formation and outgrowth in tomato shoot cuttings and root biomass in intact tomato seedlings were also depressed by epibrassinolide, but only at a higher concentration (0.1μ M ). Concentrations of the steroidal estrogens, estrone and estradiol (as sulphate derivatives), in excess of 1.0 μ M , reduced cultured root growth as well as root number and total (but not mean) root length in shoot cuttings. Seedling root growth was only slightly inhibited by estradiol but not by estrone. Both epibrassinolide and estrogens caused morphological abnormalities, such as epinasty and leaf-inrolling in cuttings and seedlings. Epibrassinolide stimulated extension growth of the hypocotyl and epicotyl in cuttings and of the hypocotyl in seedlings, but estrogens exerted no effects on shoot growth. 相似文献
15.
16.
The influence of nicotianamine (NA) on formation and elongation of adventitious roots in hypocotyls of de-rooted NA-less mutant seedlings of Lycopersicon esculentum Mill, was examined in relation to the iron supply [ferric N-N'-ethylenediaminedi-(2-hydroxyphenylacetate) (FEDDHA), ferric ethylenediaminetetracetate (FeEDTA), ferric N-(2-hydroxyethyl)-ethylenediaminetriacetate (FeHEDTA, Fe-citrate and FeCl3 ] in the nutrient solution. The initiation of root primordia in hypocotyl cuttings was independent of NA and occurred with about the same frequency in both, mutant and wild-type. In the mutant the development of primordia to adventitious roots was blocked at all iron sources used, except FeEDTA. Addition of NA (5x 10−6 to 2 × 10−5 M ) to the rooting medium resulted in a fast growth of adventitious roots in mutant cuttings with all iron sources tested. Rooting of wild-type cuttings was independent from NA application and iron sources. We suppose that NA is involved in the intracellular transport of iron. Its function is possibly linked with chelation of ferrous iron in the cell. 相似文献
17.
Navet R Jarmuszkiewicz W Almeida AM Sluse-Goffart C Sluse FE 《Journal of bioenergetics and biomembranes》2003,35(2):157-168
Alternative oxidase (AOX) and uncoupling protein (UCP) are present simultaneously in tomato fruit mitochondria. In a previous work, it has been shown that protein expression and activity of these two energy-dissipating systems exhibit large variations during tomato fruit development and ripening on the vine. It has been suggested that AOX and UCP could be responsible for the respiration increase at the end of ripening and that the cytochrome pathway could be implicated in the climacteric respiratory burst before the onset of ripening. In this study, the use of tomato mutants that fail normal ripening because of deficiencies in ethylene perception or production as well as the treatment of one selected mutant with a chemical precursor of ethylene have revealed that the bioenergetics of tomato fruit development and ripening is under the control of this plant hormone. Indeed, the evolution pattern of bioenergetic features changes with the type of mutation and with the introduction of ethylene into an ethylene-synthesis-deficient tomato fruit mutant during its induced ripening. 相似文献
18.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP
days after pollination
- kDa
kilodaltons
- SP1-4
storage proteins 1–4
- SDS-PAGE
sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- HASI
hours after seed isolation
- MS medium
Murashige and Skoog (1962) medium
This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B. 相似文献
19.
Bin Liang Yu Zheng Juan Wang Wenbo Zhang Ying Fu Wenbin Kai Yandan Xu Bing Yuan Qian Li Ping Leng 《The Plant journal : for cell and molecular biology》2020,102(6):1220-1233
β‐Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β‐glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA‐BG in fruits is still unclear. In this study, through RNA‐seq analysis of persimmon fruit, 10 full‐length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA‐glucose ester (ABA‐GE) to release free ABA. Compared with wild‐type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1‐OE) accelerated fruit ripening onset by 3–4 days by increasing ABA levels at the pre‐breaker stage and induced early ethylene release compared with wild‐type fruits. DkBG1‐OE altered the expression of ripening regulator NON‐RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA‐GE. 相似文献
20.
E. Pichersky N. E. Hoffman R. Bernatzky B. Piechulla S. D. Tanksley A. R. Cashmore 《Plant molecular biology》1987,9(3):205-216
We report the isolation and characterization of a tomato nuclear gene encoding a chlorophyll a/b-binding (CAB) protein of photosystem I (PSI). The coding nucleotide sequence of the gene, designated Cab-6B, is different at eight positions from that of a previously isolated cDNA clone derived from the Cab-6A gene, but the two genes encode identical proteins. Sequence comparison with the cDNA clone revealed the presence of three short introns in Cab-6B. Genetic mapping experiments demonstrate that Cab-6A and Cab-6B are tightly linked and reside on chromosome 5, but the physical distance between the two genes is at least 7 kilobases. Cab-6A and Cab-6B have been designated Type I PSI CAB genes. They are the only two genes of this branch of the CAB gene family in the tomato genome, and they show substantial divergence to the genes encoding CAB polypeptides of photosystem II. The Type I PSI CAB genes, like the genes encoding PSII CAB proteins, are highly expressed in illuminated leaf tissue and to a lesser extent in other green organs. 相似文献