首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Treatment of hypocotyl sections or cell suspension cultures of dwarf French bean (Phaseolus vulgaris L.) with an abiotic elicitor (denatured ribonuclease A) resulted in increased extractable activity of the enzyme l-phenylalanine ammonia-lyase. This induction could be transmitted from treated cells through a dialysis membrane to cells which were not in direct contact with the elicitor. In hypocotyl sections, induction of isoflavonoid phytoalexin accumulation was also transmitted across a dialysis membrane, although levels of insoluble, lignin-like phenolic material remained unchanged in elicitor-treated and control sections. In bean cell suspension cultures, the induction of phenylalanine ammonia-lyase in cells separated from ribonuclease-treated cells by a dialysis membrane was also accompanied by increases in the activities of chalcone synthase and chalcone isomerase, two enzymes previously implicated in the phytoalexin defense response. Such intercellular transmission of elicitation did not occur in experiments with cells treated with a biotic elicitor preparation heat-released from the cell walls of the bean pathogen Colletotrichum lindemuthianum. The results confirm and extend previous suggestions that a low molecular weight, diffusible factor of host plant origin is involved (in French bean) in the intercellular transmission of the elicitation response to abiotic elicitors.  相似文献   

2.
The isoflavonoid conjugates medicarpin-3-O-glucoside-6″-O-malonate (MGM), afrormosin-7-O-glucoside (AG), and afrormosin-7-O-glucoside-6″-O-malonate (AGM) were isolated and characterized from cell suspension cultures of alfalfa (Medicago sativa L.), where they were the major constitutive secondary metabolites. They were also found in alfalfa roots but not in other parts of the plant. The phytoalexin medicarpin accumulated rapidly in suspension cultured cells treated with elicitor from Colletotrichum lindemuthianum, and this was subsequently accompanied by an increase in the levels of MGM. In contrast, net accumulation of afrormosin conjugates was not affected by elicitor treatment. Labeling studies with [14C]phenylalanine indicated that afrormosin conjugates were the major de novo synthesized isoflavonoid products in unelicited cells. During elicitation, [14C]phenylalanine was incorporated predominantly into medicarpin, although a significant proportion of the newly synthesized medicarpin was also conjugated. Treatment of 14C-labeled, elicited cells with l-α-aminooxy-β-phenylpropionic acid, a potent inhibitor of PAL activity in vivo, resulted in the initial appearance of labeled medicarpin of very low specific activity, suggesting that the phytoalexin could be released from a preformed conjugate under these conditions. Our data draw attention to the involvement of isoflavone hydroxylases during the constitutive and elicitor-induced accumulation of isoflavonoids and their conjugates in alfalfa cell cultures.  相似文献   

3.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

4.
5.
Summary Cell suspension cultures of alfalfa (Medicago sativa L.) accumulated phenolic secondary metabolites in a pattern similar to that seen in alfalfa roots. Upon treatment with a crude elicitor preparation from the bean pathogen Colletotrichum lindemuthianum, the pterocarpan phytoalexin medicarpin accumulated in cells and culture medium. The extractable activities of six enzymes involved in medicarpin biosynthesis (including three cytochrome P450 activities) were induced by treatment with elicitor, and their induction kinetics correlated with the rate of medicarpin accumulation. However, protoplasts prepared from these cultures accumulated neither medicarpin nor other secondary products after treatment with elicitor. The cytochrome P450 activities were induced during the preparation of the protoplasts, but could be further induced by treatment with fungal elicitor. The results are discussed in relation to the use of alfalfa protoplasts as a system for functional analysis of cloned defense genes.Abbreviations AUFS absorption unit full scale - CHI chalcone isomerase (EC 5.5.1.6) - CHS chalcone synthase (EC 2.3.1.74) - C40H cinnamic acid 4-hydroxylase (EC 1.14.13.11) - CLE elicitor from Colletotrichum lindemuthianum - IFOH isoflavone 2-hydroxylase - IFS isoflavone synthase - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

6.
Jackbean, Canavalia ensiformis (L.), callus tissues synthesized the phytoalexin, medicarpin (3-hydroxy-9-methoxypterocarpan), when treated with spore suspensions of Pithomyces chartarum (Berk. and Curt.) M. B. Ellis, a nonpathogen of jackbean. Medicarpin was isolated from treated callus tissue and identified by its ultraviolet and mass spectra. The minimum spore concentration found to elicit medicarpin synthesis after 26 hours was 1 × 105 spores/ml; levels of medicarpin in callus tissue increased linearly up to 1 × 107 spores/ml, indicating that the recognition sites for presumed elicitors were not saturated. Medicarpin was first detected in callus treated with 1 × 107 spores/ml, 6 to 12 hours after application, and the concentration reached a maximum at 48 hours, slowly declining thereafter to 72 hours. In callus treated with 3.15 mm HgCl2, medicarpin concentrations were also maximum by 48 hours. Phenylalanine ammonia-lyase (EC 4.3.1.5) activity increased 2-fold in spore-treated callus after 36 hours. Isoliquiritigenin, daidzein, and genistein o-methyltransferase (EC 2.1.1.6) activities were increased 3- to 4-fold in treated callus. Caffeic acid and naringenin were more efficient substrates for o-methyltransferase activity than the other flavonoids or apigenin, but there was no increase in these o-methyltransferase activities in spore-treated callus. The phytoalexin response in this callus tissue culture system compares well with natural plant systems and should be an excellent system for investigating regulation of phytoalexin synthesis.  相似文献   

7.
The pool sizes of free l-phenylalanine and l-tyrosine, the precursors of rosmarinic acid in Anchusa officinalis L. cell suspension cultures, fluctuated during the culture cycle. The major increase in pool sizes was preceded by a peak of prephenate aminotransferase activity, while the subsequent decrease coincided with the presence of high activities of phenylalanine ammonia-lyase and tyrosine aminotransferase, the two entrypoint enzymes of the rosmarinic acid biosynthesis pathway. Timecourse feeding studies with linear growth stage cells revealed that the tyrosine pool turned over rapidly, consistent with direct participation in rosmarinic acid synthesis. Since externally applied l-tyrosine was rapidly incorporated into rosmarinic acid with little evidence of radioactively labeled intermediates, it is suggested that there exists a close coupling between the l-tyrosine pool and the rosmarinic acid biosynthetic pathway, which may involve the channelling of intermediates both into and within the pathway.  相似文献   

8.
9.
Elicitor induction of phenylpropanoid metabolism was investigated in suspension-cultured cells of the fast-growing poplar hybrid (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) H11-11. Treatment of cells with polygalacturonic acid lyase or two fungal elicitors resulted in rapid and transient increases in extractable l-phenylalanine ammonia lyase and 4-coumarate:coenzyme A ligase enzyme activities. The substrate specificity of the inducible 4-coumarate:coenzyme A ligase enzyme activity appeared to differ from substrate specificity of 4-coumarate:coenzyme A ligase enzyme activity in untreated control cells. Large and transient increases in the accumulation of l-phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase mRNAs preceded the increases in enzyme activities and were detectable by 30 minutes after the start of elicitor treatment. Chalcone synthase, cinnamyl alcohol dehydrogenase, and coniferin β-glucosidase enzyme activities were unaffected by the elicitors, but a large and transient increase in β-glucosidase activity capable of hydrolyzing 4-nitrophenyl-β-glucoside was observed. Subsequent to increases in l-phenylalanine ammonialyase and 4-coumarate:coenzyme A ligase enzyme activities, cell wall-bound thioglycolic acid-extractable compounds accumulated in elicitor-treated cultures, and these cells exhibited strong staining with phloroglucinol, suggesting the accumulation of wall-bound phenolic compounds.  相似文献   

10.
In wounded cotyledons ofPhaseolus vulgaris L. the accumulation of the 5-hydroxy isoflavonoids kievitone and 2-hydroxygenistein precedes the major increases in the levels of the 5-deoxy compounds phaseollin and coumestrol. Increased phytoalexin levels are preceded by transient increases in the extractable activities of L-phenylalanine ammonia-lyase (EC 4.3.1.5.), chalcone synthase and chalcone isomerase (EC 5.5.1.6.). Accumulation of phytoalexins, above wounded control levels, is observed following treatment of excised cotyledons or hypocotyls with crude or fractionated elicitor preparations heat-released from the cell walls ofColletotrichum lindemuthianum. Chalcone synthase levels are also induced in cotyledons, although crude elicitor and all fractions suppress L-phenylalanine ammonia-lyase activity in both tissues. Kievitone is the major phytoalexin induced in cotyledons, whereas in hypocotyls phaseollin predominates. Patterns of phytoalexin accumulation have been studied in response to varying concentrations of the crude and fractionated elicitor; 5-hydroxy isoflavonoid accumulation is highly dependent upon elicitor concentration, the dose-response curves for kievitone accumulation showing maxima at around 1 g glucose equivalents per cotyledon, minima at 2–3 g equivalents and increasing induction at higher concentrations. Similar patterns are observed for L-phenylalanine ammonia-lyase and chalcone synthase levels, although the overall extent of these changes is masked by the high wound response. Accumulation of 5-deoxy isoflavonoids above control levels requires high elicitor concentrations; no experimental conditions were found under which phaseollin accumulated to higher levels than kievitone in cotyledons during the first 48 h after elicitation.Abbreviations CHS chalcone synthase - PAL L-phenylalanine ammonia-lyase  相似文献   

11.
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA carboxylase and chalcone synthase, in suspension-cultured soybean cells. The changes in phenylalanine ammonia-lyase and chalcone synthase activities were correlated with corresponding changes in the mRNA activities encoding these enzymes, as determined by enzyme synthesis in vitro in a mRNA-dependent reticulocyte lysate. The time courses of the elicitor-induced changes in mRNA activities for both enzymes were very similar with respect to each other. Following the onset of induction, the two mRNA activities increased significantly at 3 h, reached highest levels at 5 to 7 h, and subsequently returned to low values at 10 h. Similar degrees of induction of mRNA activities and of the catalytic activities of phenylalanine ammonia-lyase and chalcone synthase were observed in response to three diverse microbial compounds, the glucan elicitor from P. megasperma, xanthan, an extracellular polysaccharide from Xanthomonas campestris, and endopolygalacturonase from Aspergillus niger. However, whereas the glucan elicitor induced the accumulation of large amounts of the phytoalexin, glyceollin, in soybean cells, endopolygalacturonase induced only low, albeit significant, amounts; xanthan did not enhance glyceollin accumulation under the conditions of this study. This result might imply that enzymes other than phenylalanine ammonia-lyase or chalcone synthase exert an important regulatory function in phytoalexin synthesis in soybean cells.  相似文献   

12.
Changes in the activities of three enzymes (nitrate reductase, l-phenylalanine ammonia-lyase, and a dehydronicotinamide adenine dinucleotide-oxidase complex) were measured during development of water stress in young maize (Zea mays) plants.  相似文献   

13.
The accumulation of the isoflavonoid phytoalexin, glyceollin, occurs in hypocotyls of green soybean seedlings (Glycine max L. Merr. cv Harosoy 63) in response to the injection of a glucan elicitor isolated from the mycelial walls of the fungus, Phytophthora megasperma f. sp. glycinea. This accumulation, which levels off after 24 hours, is preceded by a dramatic, transient rise in extractable activities of two early enzymes in the biosynthetic pathway, phenylalanine ammonia-lyase (PAL) and p-coumaryl CoA ligase (pCL). The maximum amount of extractable activity occurs 12 to 16 hours after elicitor treatment and is coincident with the most rapid period of glyceollin accumulation. These results suggest a regulatory role for these early enzymes in the biosynthesis of this secondary metabolite. High performance liquid chromatography analysis of the early intermediates in the pathway further corroborates this hypothesis. The relative pool size and rate of turnover of p-coumaric acid, an early intermediate in glyceollin production, increase during the period of rapid increases in enzyme activities. Removal of cotyledons from elicitor-treated seedlings reduces glyceollin accumulation approximately 70%. This limitation of phytoalexin accumulation by cotyledon removal is correlated with a similar cotyledon effect on reduction of extractable activities of both PAL and pCL as well as a decrease in the flux of carbon through the p-coumaric acid pool. This research further supports the hypothesis that early enzymic steps in a biosynthetic pathway diverting carbon from primary to secondary metabolites function as regulatory control points.  相似文献   

14.
Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells   总被引:11,自引:0,他引:11  
A glucan elicitor from the cell walls of the fungus Phytophthora megasperma f.sp. glycinea caused increases in the activities of the phytoalexin biosynthetic enzymes, phenylalanine ammonia-lyase and chalcone synthase, and induced the production of the phytoalexin, glyceollin, in soybean (Glycine max) cell suspension cultures when tested in culture medium containing 1.2 mmol/liter Ca2+. Removal of extracellular Ca2+ by treatment with ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid followed by washing the cells with Ca2+-free culture medium abolished the elicitor-mediated phytoalexin response. This suppression was largely reversed on readdition of Ca2+. Elicitor-mediated enhancement of biosynthetic enzyme activities and accumulation of glyceollin was strongly inhibited by La3+; effective concentrations for 50% inhibition were (mumol/liter) 40 for phenylalanine ammonia-lyase, 100 for chalcone synthase, and 30 for glyceollin. Verapamil caused similar effects only at concentrations higher than 0.1 mmol/liter, whereas trifluoperazine and 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate did not affect enzyme induction by the elicitor in the concentration range tested. Uptake of alpha-amino isobutyric acid into soybean cells, which was rapidly inhibited in the presence of the glucan elicitor, was not affected by La3+ nor was uptake inhibition by the elicitor relieved by La3+. The Ca2+ ionophore, A23187, enhanced phytoalexin biosynthetic enzyme activities and glyceollin accumulation in a dose-dependent manner, with 50% stimulation (relative to the elicitor) occurring at about 5 mumol/liter. The results suggest that the glucan elicitor causes changes in metabolite fluxes across the plasma membrane of soybean cells, among which changes in Ca2+ fluxes appear to be important for the stimulation of the phytoalexin response.  相似文献   

15.
16.
17.
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50–300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.  相似文献   

18.
19.
Isoflavonoids are believed to play important roles in plant-microbe interactions. During infection of alfalfa (Medicago sativa) leaves with the fungal pathogen Phoma medicaginis, rapid increases in mRNA levels and enzyme activities of isoflavone reductase, phenylalanine ammonia-lyase, chalcone synthase and other defense genes are observed within 1 to 2 hours. The phytoalexin medicarpin and its antifungal metabolite sativan increase beginning at 4 and 8 hours, respectively, along with other isoflavonoids. In contrast, during colonization of alfalfa roots by the symbiotic mycorrhizal fungus Glomus versiforme, expression of the general phenylpropanoid and flavonoid genes phenylalanine ammonia-lyase and chalcone synthase increases while mRNA levels for the phytoalexin-specific isoflavone reductase decrease. The total isoflavonoid content of colonized roots increases with time and is higher than that of uninoculated roots, but the accumulation of the antifungal medicarpin is somehow suppressed.An isoflavone reductase genomic clone has been isolated, promoter regions have been fused to the reporter gene -glucuronidase, and the promoter-reporter fusions have been transformed into tobacco and alfalfa. Using histological staining, we have studied the developmental and stress-induced expression of this phytoalexin-specific gene in whole plants at a more detailed level than other methods allow. The isoflavone reductase promoter is functional in tobacco, a plant which does not synthesize isoflavonoids. Infection of transgenic alfalfa plants by Phoma causes an increase in -glucuronidase staining, as does elicitation of transgenic alfalfa cell cultures, indicating that this promoter fusion is a good indicator of phytoalexin biosynthesis in alfalfa.Abbreviations CA4H cinnamic acid 4-hydroxylase - CHI chalcone isomerase - CHOMT chalcone O-methyltransferase - CHS chalcone synthase - 4CL 4-coumarate:CoA ligase - COMT caffeic acid O-methyltransferase - FGM malonylated glucoside of formononetin - GUS -glucuronidase - IFOH isoflavone 2-hydroxylase - IFR isoflavone reductase - IFS isoflavone synthase - IOMT isoflavone 4-O-methyltransferase - MGM medicarpin 3-O-glucoside-6-O-malonate - PAL L-phenylalanine ammonia-lyase - PTS pterocarpan synthase - VAM vesicular arbuscular mycorrhizal - X-gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

20.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号