首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transforming growth factor-beta (TGF-beta) superfamily consists of a group of secreted signaling molecules that perform important roles in the regulation of cell growth and differentiation. TGF-beta activated kinase-1 binding protein-1 (TAB1) was identified as a molecule that activates TGF-beta activated kinase-1 (TAK1). Recent studies have revealed that the TAB1-TAK1 interaction plays an important role in signal transduction in vitro, but little is known about the role of these molecules in vivo. To investigate the role of TAB1 during development, we cloned the murine Tab1 gene and disrupted it by homologous recombination. Homozygous Tab1 mutant mice died, exhibiting a bloated appearance with extensive edema and hemorrhage at the late stages of gestation. By histological examinations, it was revealed that mutant embryos exhibited cardiovascular and lung dysmorphogenesis. Tab1 mutant embryonic fibroblast cells displayed drastically reduced TAK1 kinase activities and decreased sensitivity to TGF-beta stimulation. These results indicate a possibility that TAB1 plays an important role in mammalian embryogenesis and is required for TAK1 activation in TGF-beta signaling.  相似文献   

2.
Transforming growth factor beta (TGF-beta) is a multifunctional cytokine which plays an important role in cutaneous wound repair. To gain insight into the mechanisms of action of this growth and differentiation factor in the skin, we searched for genes which are regulated by TGF-beta1 in cultured HaCaT keratinocytes. Using the differential display RT-PCR technology we identified a gene which was strongly downregulated by TGF-beta1. The identified cDNA includes sequences of the keratin 15 (K15) gene which encodes a component of the cytoskeleton of basal cells in stratified epithelia. Surprisingly, our cDNA also included an unknown sequence. Since this cDNA lacks an open reading frame, the corresponding mRNA is likely to be nonfunctional. However, we also demonstrate a strong negative regulation of the expression of the published, functional K15 variant. Expression of K15 was also suppressed by tumor necrosis factor alpha (TNF-alpha) and to a lesser extent by epidermal growth factor (EGF) and keratinocyte growth factor (KGF). By contrast, the major basal type I keratin, K14, was upregulated by TGF-beta1, whereas TNF-alpha, EGF, and KGF had no effect. Consistent with the in vitro data, we found a significant reduction of the K15 mRNA levels after skin injury, whereas K14 expression increased during the wound healing process. Immunostaining revealed the presence of K15 in all basal cells of the epidermis adjacent to the wound, but not in the hyperproliferative epithelium above the granulation tissue. These data demonstrate that K15 is excluded from the activated keratinocytes of the hyperthickened wound epidermis, possibly as a result of increased growth factor expression in injured skin.  相似文献   

3.
TGF-beta and fibrosis   总被引:18,自引:0,他引:18  
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-beta is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-beta is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-beta. In general, the release and activation of TGF-beta stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-beta contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-beta contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1-3]. In the following chapter, we will discuss the role of TGF-beta in tissue fibrosis, with particular emphasis on renal fibrosis.  相似文献   

4.
Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.  相似文献   

5.
Transforming growth factors-beta (TGF-beta) are multifunctional molecules with profound biological effects in many developmental processes including regulation of cell proliferation, differentiation, cell adhesion, skeletal development, haematopoiesis, inflammatory responses, and wound healing. To learn about the role of TGF-beta in vivo, phenotypes of targeted mutations of molecules within the TGF-beta signalling pathway, TGF-beta1, -beta2, -beta3, TGF-beta receptor (TbetaR-II) and the signalling molecules SMAD2, SMAD3 and SMAD4, are discussed in this review. The three individual TGF-beta mutants show distinct and only partially overlapping phenotypes. In mice, targeted disruption of the TGF-beta1 gene results in diffuse and lethal inflammation about 3 weeks after birth, suggesting a prominent role of TGF-beta in the regulation of immune cell proliferation and extravasation into tissues. However, just half of the TGF-beta1 (-/-) conceptuses actually reach partuition due to defective haematopoiesis and endothelial differentiation. Targeted disruption of both TGF-beta2 and TGF-beta3 genes results in perinatal lethality. TGF-beta2 null mice exhibit a broad range of developmental defects, including cardiac, lung, craniofacial, limb, eye, ear and urogenital defects, whereas TGF-beta3 gene ablation results exclusively in defective palatogenesis and delayed pulmonary development. The TbetaR-II null phenotype closely resembles that of TGF-beta1 (-/-) conceptuses, which die in utero by E10.5. Loss of SMAD2 or SMAD4 results in related phenotypes: the mutants fail to form an organized egg cylinder, lack mesoderm required for gastrulation and die prior to E8.5. Together, gene ablation within the TGF-beta signalling pathway supports the notion of a prominent role of TGF-beta during development.  相似文献   

6.
In vivo, transforming growth factor (TGF)-beta1 and matrix metalloproteinases (MMPs) present at the site of airway injury are thought to contribute to epithelial wound repair. As TGF-beta1 can modulate MMP expression and MMPs play an important role in wound repair, we hypothesized that TGF-beta1 may enhance airway epithelial repair via MMPs secreted by epithelial cells. We evaluated the in vitro influence of TGF-beta1 on wound repair in human airway epithelial cells cultured under conditions allowing differentiation. The results showed that TGF-beta1 accelerated in vitro airway wound repair, whereas MMP inhibitors prevented this acceleration. In parallel, we examined the effect of TGF-beta1 on the expression of MMP-2 and MMP-9. TGF-beta1 induced a dramatic increase of MMP-2 expression with an increased steady-state level of MMP-2 mRNA, contrasting with a slight increase in MMP-9 expression. To confirm the role of MMP-2, we subsequently evaluated the effect of MMP-2 on in vitro airway wound repair and demonstrated that the addition of MMP-2 reproduced the acceleration of wound repair induced by TGF-beta1. These results strongly suggest that TGF-beta1 increases in vitro airway wound repair via MMP-2 upregulation. It also raises the issue of a different in vivo biological role of MMP-2 and MMP-9 depending on the cytokine microenvironment.  相似文献   

7.
The effects on vascular wound repair in vitro of aFGF and TGF-beta, growth factors having opposite influences on endothelial cell growth and angiogenesis, were studied using as a model a mechanical lesion of confluent endothelium. Modulation by heparin of the activities of these growth factors during the repair process was also examined. Whereas heparin alone inhibited repair by lowering both cell proliferation and cell migration, TGF-beta alone mainly inhibited cell proliferation. When added together, TGF-beta and heparin exerted a combined inhibitory effect resulting in a residual lesion 50% larger than in controls. aFGF alone accelerated lesion coverage and this effect was enhanced by 40% over control values when heparin was added with aFGF. This acceleration was slightly (less than 10%) but consistently diminished by TGF-beta. Cell density in confluent unwounded areas was increased by 40% in the presence of aFGF, but TGF-beta diminished cell density by 20%. A small (30%) increase in intracellular cAMP was measured whenever aFGF was present during the repair process. In comparison, intracellular cAMP inducing agents (forskolin, dbcAMP) accelerated cell migration by 20% during lesion recovery without affecting cell proliferation or density. The present results show that the inhibitory effects of TGF-beta during vascular wound repair are opposed by aFGF. Furthermore, heparin (or heparan sulfates in vivo) modulates growth factors having activating or inhibiting functions and thus plays a regulatory role during the repair process. cAMP-inducing substances other than growth factors are able to accelerate cell migration.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor that plays a critical role in modulating cell growth, differentiation, and plasticity. There is increasing evidence that after cells lose their sensitivity to TGF-beta-mediated growth inhibition, autocrine TGF-beta signaling may potentially promote tumor cell motility and invasiveness. To understand the molecular mechanisms by which autocrine TGF-beta may selectively contribute to tumor cell motility, we have generated MDA-MB-231 breast cancer cells stably expressing a kinase-inactive type II TGF-beta receptor (T beta RII-K277R). Our data indicate that T beta RII-K277R is expressed, can associate with the type I TGF-beta receptor, and block both Smad-dependent and -independent signaling pathways activated by TGF-beta. In addition, wound closure and transwell migration assays indicated that the basal migratory potential of T beta RII-K277R expressing cells was impaired. The impaired motility of T beta RII-K277R cells could be restored by reconstituting TGF-beta signaling with a constitutively active TGF-beta type I receptor (ALK5(TD)) but not by reconstituting Smad signaling with Smad2/4 or Smad3/4 expression. In addition, the levels of ALK5(TD) expression sufficient to restore motility in the cells expressing T beta RII-K277R were associated with an increase in phosphorylation of Akt and extracellular signal-regulated kinase 1/2 but not Smad2. These data indicate that different signaling pathways require different thresholds of TGF-beta activation and suggest that TGF-beta promotes motility through mechanisms independent of Smad signaling, possibly involving activation of the phosphatidylinositol 3-kinase/Akt and/or mitogen-activated protein kinase pathways.  相似文献   

9.
10.
Skin repair and scar formation: the central role of TGF-beta   总被引:1,自引:0,他引:1  
Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor beta (TGF-beta), a cytokine secreted by several different cell types involved in healing. TGF-beta has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-beta in normal and impaired wound-healing models. It also explores TGF-beta activity in scarless foetal wound healing. Knowledge of TGF-beta function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.  相似文献   

11.
Transforming growth factor-beta 1 (TGF-beta 1) has been shown to up-regulate the synthesis of nerve growth factor (NGF) in cultured rat astrocytes and in neonatal brain in vivo (Lindholm, D., B. Hengerer, F. Zafra, and H. Thoenen. 1990. NeuroReport. 1:9-12). Here we show that mRNA encoding TGF-beta 1 increased in rat cerebral cortex after a penetrating brain injury. The level of NGF mRNA is also transiently increased after the brain trauma, whereas that of brain-derived neurotrophic factor remained unchanged. In situ hybridization experiments showed a strong expression of TGF-beta 1 4 d after the lesion in cells within and in the vicinity of the wound. Staining of adjacent sections with OX-42 antibodies, specific for macrophages and microglia/brain macrophages, revealed a similar pattern of positive cells, suggesting that invading macrophages, and perhaps reactive microglia, are the source of TGF-beta 1 in injured brain. Both astrocytes and microglia express TGF-beta 1 in culture, and TGF-beta 1 mRNA levels in astrocytes are increased by various growth factors, including FGF, EGF, and TGF-beta itself. TGF-beta 1 is a strong inhibitor of astrocyte proliferation and suppresses the mitotic effects of FGF and EGF on astrocytes. The present results indicate that TGF-beta 1 expressed in the lesioned brain plays a role in nerve regeneration by stimulating NGF production and by controlling the extent of astrocyte proliferation and scar formation.  相似文献   

12.
13.
Hair follicle development serves as an excellent model to study control of organ morphogenesis. Three specific isoforms of TGF-beta exist which exhibit a distinct pattern of expression during hair follicle morphogenesis. To clarify the still elusive role of these factors in hair follicle development, we have used a combined genetic and functional approach: analysis of hair follicle development in mice with disruptions of the TGF-beta1, 2, and 3 genes was coupled with a direct functional test of the effect of added purified factors on fetal hair follicle development in skin organ cultures. TGF-beta2 null mice exhibited a profound delay of hair follicle morphogenesis, with a 50% reduced number of hair follicles. In contrast to hair follicle development, growth and differentiation of interfollicular keratinocytes proceeded unimpaired. Unlike TGF-beta2-/- mice, mice with a disruption of the TGF-beta1 gene showed slightly advanced hair follicle formation, while lack of the TGF-beta3 gene did not have any effects. Treatment of wild-type, embryonic skin explants (E14.5 or E15.5) with TGF-beta2 protein in either soluble form or slow release beads induced hair follicle development and epidermal hyperplasia, while similar TGF-beta1 treatment exerted suppressive effects. Thus, the TGF-beta2 isoform plays a specific role, not shared by the other TGF-beta isoforms, as an inducer of hair follicle morphogenesis and is both required and sufficient to promote this process.  相似文献   

14.
The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-beta (TGF-beta) modulates these processes, we hypothesized that epithelial-derived TGF-beta also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-beta in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-beta2 at a concentration of 50-70 pg/ml, whereas TGF-beta1 is undetectable. TGF-beta2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both alpha-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-beta2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-beta2 (0-400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-beta2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.  相似文献   

15.
The role of many growth factors and cytokines in the process of wound healing has been intensively investigated in recent two decades. Among them, transforming growth factor-betas (TGF-betas) are well known to have a potent stimulatory effect on collagen synthesis as shown in various in vivo experimental systems. In the present study, we examined the effects of various growth factors on the promoter activity of the proalpha2 (I) collagen gene (COL1A2) during the wound healing process. For this purpose, we utilized transgenic mice harboring the -17 kb promoter sequence of the mouse COL1A2 linked to either a firefly luciferase or a bacterial beta-galactosidase gene. These mice exhibited normal phenotypic expression and the wound healing process was not impaired. Full thickness wounds were made by punch biopsy. We examined the effects of TGF-beta1, -beta2, -beta3, basic fibroblast growth factor, platelet-derived growth factor, and connective tissue growth factor by applying them locally to the open wound every 2 days. Among the growth factors examined, all of the three isoforms of TGF- exhibited a more potent stimulatory effect on COL1A2 promoter activity than did other factors. In addition, while TGF-beta1 and -beta2 significantly increased the number of fibroblasts which were positive for X-Gal staining, TGF-beta3 treatment did not change the number of beta-galactosidase expressing cells. Accumulation of collagen fibers was observed to the same extent in the mice treated with TGF-beta1 and those with TGF-beta3. These findings suggest that TGF-beta1 and -beta3 have similar but not identical regulatory mechanisms of COL1A2 expression, and that their pathophysiological roles in wound healing might be different from each other.  相似文献   

16.
Ample evidence suggests a role of TGF-beta in preventing autoimmunity. Multiorgan inflammatory disease, spontaneous activation of self-reactive T cells, and autoantibody production are hallmarks of autoimmune diseases, such as lupus. These features are reminiscent of the immunopathology manifest in TGF-beta1-deficient mice. In this study, we show that lupus-prone (New Zealand Black and White)F(1) mice have reduced expression of TGF-beta1 in lymphoid tissues, and TGF-beta1 or TGF-beta1-producing T cells suppress autoantibody production. In contrast, the expression of TGF-beta1 protein and mRNA and TGF-beta signaling proteins (TGF-beta receptor type II and phosphorylated SMAD3) increases in the target organs, i.e., kidneys, of these mice as they age and develop progressive organ damage. In fact, the levels of TGF-beta1 in kidney tissue and urine correlate with the extent of chronic lesions that represent local tissue fibrosis. In vivo TGF-beta blockade by treatment of these mice with an anti-TGF-beta Ab selectively inhibits chronic fibrotic lesions without affecting autoantibody production and the inflammatory component of tissue injury. Thus, TGF-beta plays a dual, seemingly paradoxical, role in the development of organ damage in multiorgan autoimmune diseases. According to our working model, reduced TGF-beta in immune cells predisposes to immune dysregulation and autoantibody production, which causes tissue inflammation that triggers the production of anti-inflammatory cytokines such as TGF-beta in target organs to counter inflammation. Enhanced TGF-beta in target organs, in turn, can lead to dysregulated tissue repair, progressive fibrogenesis, and eventual end-organ damage.  相似文献   

17.
18.
The transforming growth factor-beta (TGF-beta) regulates hepatocyte growth, inhibiting proliferation and inducing apoptosis. Indeed, escaping from the TGF-beta suppressor actions might be a prerequisite for liver tumour progression. In this work we show that TGF-beta plays a dual role in regulating apoptosis in FaO rat hepatoma cells, since, in addition to its pro-apoptotic effect, TGF-beta also activates survival signals, such as AKT, the epidermal growth factor receptor (EGFR) being required for its activation. TGF-beta induces the expression of the EGFR ligands transforming growth factor-alpha (TGF-alpha) and heparin-binding EGF-like growth factor (HB-EGF) and induces intracellular re-localization of the EGFR. Cells that overcome the apoptotic effects of TGF-beta undergo morphological changes reminiscent of an epithelial-mesenchymal transition (EMT) process. In contrast, TGF-beta does not activate AKT in adult hepatocytes, which correlates with lack of EGFR transactivation and no response to EGFR inhibitors. Although TGF-beta induces TGF-alpha and HB-EGF in adult hepatocytes, these cells show very low expression of TACE/ADAM 17 (TNF-alpha converting enzyme), which is required for EGFR ligand proteolysis and activation. Furthermore, adult hepatocytes do not undergo EMT processes in response to TGF-beta, which might be due, at least in part, to the fact that F-actin re-organization induced by TGF-beta in FaO cells require the EGFR pathway. Finally, results indicate that EGFR transactivation does not block TGF-beta-induced cell cycle arrest in FaO cells, but must be interfering with the pro-apoptotic signalling. In conclusion, TGF-beta is a suppressor factor for adult quiescent hepatocytes, but not for hepatoma cells, where it plays a dual role, both suppressing and promoting carcinogenesis.  相似文献   

19.
Tissue repair is a well-orchestrated biological process involving numerous soluble mediators, and an imbalance between these factors may result in impaired repair and fibrosis. Transforming growth factor (TGF)-beta is a key profibrotic element in this process and it is thought that its three isoforms act in a similar way. Here, we report that TGF-beta3 administered to rat lungs using transient overexpression initiates profibrotic effects similar to those elicited by TGF-beta1, but causes less severe and progressive changes. The data suggest that TGF-beta3 does not lead to inhibition of matrix degradation in the same way as TGF-beta1, resulting in non-fibrotic tissue repair. Further, TGF-beta3 is able to downregulate TGF-beta1-induced gene expression, suggesting a regulatory role of TGF-beta3. TGF-beta3 overexpression results in an upregulation of Smad proteins similar to TGF-beta1, but is less efficient in inducing the ALK 5 and TGF-beta type II receptor (TbetaRII). We provide evidence that this difference may contribute to the progressive nature of TGF-beta1-induced fibrotic response, in contrast to the limited fibrosis observed following TGF-beta3 overexpression. TGF-beta3 is important in "normal wound healing", but is outbalanced by TGF-beta1 in "fibrotic wound healing" in the lung.  相似文献   

20.
Sphingosylphosphorylcholine (SPC) has been reported to stimulate the expression of fibronectin (FN), which plays a key role in cell recruitment and adhesion during wound healing. In a previous study, we reported that SPC induces differentiation of human adipose tissue-derived mesenchymal stem cells (hATSCs) to smooth muscle-like cell types through ERK-dependent autocrine secretion of TGF-beta1 and delayed activation of the TGF-beta1-Smad pathway. In the present study, we demonstrated that SPC dose- and time-dependently increased the expression of FN in hATSCs. Pretreatment of the cells with U0126, an MEK inhibitor, markedly attenuated the SPC-induced expression of FN and delayed phosphorylation of Smad2, suggesting that ERK is involved in the SPC induction of FN expression through activation of Smad2. In addition, the SPC-induced expression of FN and delayed activation of Smad2 were abrogated by SB-431542, a TGF-beta type I receptor kinase inhibitor, or anti-TGF-beta1 neutralizing antibody. Furthermore, the SPC-induced expression of FN was abrogated by adenoviral expression of Smad7, an inhibitory Smad, or short interference RNA (siRNA)-mediated depletion of endogenous Smad2 expression, suggesting that SPC induces the expression of FN through ERK-dependent activation of the TGF-beta1-Smad2 crosstalk pathway. Adhesion of U937 monocytic cells to hATSCs was enhanced by pretreatment of hATSCs with SPC or TGF-beta1 for 4 days, and the peptide GRGDSP (an antagonist of fibronectin receptors) blocked the adhesion of U937 cells to the hATSCs. These results led us to suggest that SPC-induced FN expression plays a pivotal role in the wound healing by stimulating adhesion and recruitment of leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号