首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The family Comasteridae is divided into four subfamilies on the basis of syzygy positions in the division series and proximal arm. Use of this character results in major differences in perceived relationships between genera compared with that obtained when traditional subfamilial characters are used. The primary character previously used to determine comasterid subfamilies, cirrus ornamentation, is rejected as unimportant in recognizing taxa any higher than species. Seventeen genera, including a new genus from the tropical western Atlantic, and 99 species are now recognized in the Comasteridae. Four of these genera and five species cannot be placed within the newly diagnosed subfamilies. Characters of generic importance are considered to be pinnule comb form, mouth position and, to a lesser extent, the characters traditionally used to distinguish genera.  相似文献   

2.
Bayesian, maximum‐likelihood, and maximum‐parsimony phylogenies, constructed using nucleotide sequences from the plastid gene region trnK‐matK, are employed to investigate relationships within the Cactaceae. These phylogenies sample 666 plants representing 532 of the 1438 species recognized in the family. All four subfamilies, all nine tribes, and 69% of currently recognized genera of Cactaceae are sampled. We found strong support for three of the four currently recognized subfamilies, although relationships between subfamilies were not well defined. Major clades recovered within the largest subfamilies, Opuntioideae and Cactoideae, are reviewed; only three of the nine currently accepted tribes delimited within these subfamilies, the Cacteae, Rhipsalideae, and Opuntieae, are monophyletic, although the Opuntieae were recovered in only the Bayesian and maximum‐likelihood analyses, not in the maximum‐parsimony analysis, and more data are needed to reveal the status of the Cylindropuntieae, which may yet be monophyletic. Of the 42 genera with more than one exemplar in our study, only 17 were monophyletic; 14 of these genera were from subfamily Cactoideae and three from subfamily Opuntioideae. We present a synopsis of the status of the currently recognized genera.
© The Willi Hennig Society 2011.  相似文献   

3.
Morphology of the hypopygium was investigated in 496 species from 128 genera of the family Dolichopodidae. Based on twenty morphological and morphometrical characteristics, a parsimonic dendrogram of the Dolichopodidae subfamilies was constructed. Variance analysis of the morphometrical data allowed revealing diagnostic characteristics for the subfamilies and genera of Dolichopodidae. Such characteristics as the relative lengths of the epandrium, surstylus, cercus, and apical and basoventral epandrial processes can be used for taxonomic diagnostics of the subfamilies and genera.  相似文献   

4.
A faunistic review of larvae and pupae of chironomid midges (Diptera, Chironomidae) from 15 habitats in the Hrazdan River valley (Armenia) is presented. The revealed fauna includes 40 species from 20 genera and 6 families and tribes. Diploid chromosome numbers are specified for 24 species from 13 genera and 4 subfamilies; 23 species from 14 genera and 4 subfamilies are reported from the region for the first time. Predominant oligotrophic status is confirmed for most of the reservoirs studied.  相似文献   

5.
The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.  相似文献   

6.
Basic chromosome numbers of terrestrial orchids   总被引:1,自引:0,他引:1  
The chromosome numbers of forty-one Brazilian species belonging to 11 genera of preferentially terrestrial orchids (subfamilies Cypripedioideae, Spiranthoideae, Orchidoideae, and Vanilloideae) were examined. Previous records for these subfamilies were reviewed in order to identify the ancestral chromosome numbers of terrestrial orchids. The variation observed within the subfamilies Spiranthoideae (2n=28, 36, 46, 48 and 92), and Orchidoideae (2n=42, 44, ca. 48, ca. 80, 84, and ca. 168) was similar to that previously reported in the literature. In the subfamily Spiranthoideae, some species of Prescottia (subtribe Prescottiinae) and some genera of Spiranthinae showed a bimodal karyotype with one distinctively large pair of chromosomes. The analysis of chromosome numbers of the genera in subfamilies revealed the predominance of the polyploid series 7, 14, 21, 28, 42 with a dysploid variation of ±1 in each ploidy level. These results suggest that the basic chromosome number of terrestrial orchids is x1=7 for the subfamilies Spiranthoideae and Orchidoideae, as well as other Epidendroid orchids, and that the majority of the genera are composed of palaeopolyploids.  相似文献   

7.
在最近提交的天目山姬小蜂科的报告基础上,本文再次对浙江该科昆虫进行了分类学研究。根据从天目山采集的标本和中国科学院动物研究所动物标本馆馆藏标本。研究了分属于姬小蜂科4个亚科的20属35种。文中提供了亚科,属及物种的检索表,同时还提供了关键性状的扫描电镜照片,每个物种均附有最新的寄主记录和分布记录。根据现有材料,对浙江姬小蜂科昆虫进行了初步的分析。  相似文献   

8.
9.
The phylogeny of the superfamily Chrysidoidea is reviewed. Relationships among the families proposed by Carpenter (1986) were confirmed by Brothers & Carpenter (1993) . The status of knowledge of phylogenetic relationships within families is assessed. Cladistic analyses have been undertaken only within Plumariidae (by Roig-Alsina 1994 ; a manual analysis of genera), Chrysididae (by Kimsey & Bohart 1991 ; a manual analysis of subfamilies and tribes, and genera within subfamilies) and Bethylidae (by Sorg 1988 ; a manual analysis of subfamilies, and genus groups within three of these; and by Polaszek & Krombein 1994 ; a quantitative cladistic analysis of the genera of Bethylinae). These analyeses are critically evaluated, and the current classifications within all the families examined cladistically. Generic relationships are investigated within Scolebythidae and Embolemidae; subfamily relationships are investigated within Sclerogibbidae and Dryinidae.  相似文献   

10.
The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification.  相似文献   

11.
欧亚大陆癞蝗科分类系统(直翅目:蝗亚目)   总被引:2,自引:0,他引:2  
张道川  印红  印象初 《昆虫学报》2003,46(2):218-221
对分布于欧亚大陆的癞蝗科Pamphagidae昆虫进行了亚科分类研究,将已知的47个属分为6个亚科:锯癞蝗亚科Prionotropisinae nov.,蠢蝗亚科Thrinchinae,癞蝗亚科Pamphaginae,鸣癞蝗亚科Tropidaucheninae nov.,聋癞蝗亚科Nocarodesinae nov.,秃癞蝗亚科Orchaminae nov.,其中包括4个新亚科。建立了欧亚大陆癞蝗科新的分类系统。  相似文献   

12.
Mayflies from the family Leptophlebiidae are cosmopolitan and highly diverse morphologically; they are also the largest family in numbers of genera and the second in number of species in the order Ephemeroptera. In spite of their broad diversity and the efforts employed to understand the evolution of this group, the internal classification of Leptophlebiidae remains controversial at all levels. More recently, important changes have been incorporated into the systematics of the family, increasing the number of subfamilies (from two to six) and recognizing several tribes. We present a phylogeny of the family based on 153 taxa (53 genera) and two molecular markers, representing 1655 bp, and verify the taxonomic status of the subfamilies, tribes and complexes. Based on these results, the number of subfamilies has been increased from six to eight and one new tribes and two new subtribes have been added. In addition, new ranks are proposed and the concept of Atalophlebiinae revised, including genera with distributions in the Australasian and Neotropical regions.  相似文献   

13.
金缕梅科的种子形态学及其系统学评价   总被引:6,自引:0,他引:6  
本文利用光学显微镜及扫描电镜在属级水平上观察了金缕梅科全部6亚科中的21属41种1变种植物的种子特征,结果表明:该科的种子形状、颜色、大小及种脐特征在各亚科中有差异(除了双花木亚科与金缕梅亚科的大多数属是一致的)可作为区分亚科的特征之一。根据种皮的特征,可划分为5类:(1)种皮平滑或仅在边缘部分具条纹状纹饰(双花木亚科及金缕梅亚科中大部分属);(2)种皮具条纹状纹饰,条纹有波浪加厚或升高(马蹄荷亚科);(3)种皮具瘤状纹饰或具条纹和瘤状相间排列的纹饰(红花荷亚科);(4)种皮具条一网状纹饰(壳菜果亚科);(5)种皮具网状纹饰(枫香亚科)。种皮纹饰对亚科的划分具有一定意义。此外,还详细观察了该科的种皮结构,确认金缕梅科的种皮由外种皮及内种皮构成,而外种皮又进一步划分为外层、中层和内层,种皮各层的细胞层数对该科的分类价值不大。研究结果还表明:枫香亚科的种子特征明显不同于该科的其它成员。关于枫香亚科的系统位置还需深入研究。  相似文献   

14.
印象初  王文强 《昆虫学报》2005,48(6):949-953
对分布在欧亚大陆的斑翅蝗科Oedipodidae昆虫进行了亚科分类研究, 将已知的69个属分为7个亚科: 飞蝗亚科Locustinae, 斑翅蝗亚科Oedipodinae, 异距蝗亚科Heteropterninae subfam. n., 痂蝗亚科Bryodeminae, 异痂蝗亚科Bryodemellinae, 哑斑翅蝗亚科Oedipodacrinae subfam. n.和聋斑翅蝗亚科Rashidinae subfam. n., 其中包括3个新亚科。建立了欧亚大陆斑翅蝗科新的亚科分类系统。  相似文献   

15.
鹿科动物的染色体组型及其进化   总被引:14,自引:0,他引:14  
染色体是遗传物质的主要携带者。在动植物进化过程中,染色体在数量和结构上的变化,无疑对物种形成起重要的作用。染色体的变化往往引起基因的重新排列和遗传物质的增加或丢失。染色体在结构和数量上的差异还往往造成两个本来很相近的群体间的生殖隔离而形成新种。染色体组型和染色体的带型都代表着种的特性,它为不同动物在分类研究和确定其在进化过程中的位置提供了一个新的和重要的标准。可是,染色体的结构既是稳定的,同时又是可变的。染色体组型的改变是以染色体组的结构特点为基础  相似文献   

16.
张哲  任明迅  向文倩  宋希强 《广西植物》2021,41(10):1683-1698
兰科(Orchidaceae)植物广布于除两极和极端沙漠地区外的各种陆地生态系统,包括5个亚科800多属28 000多种。东南亚地区兰科植物种数约占世界的1/3,是兰科植物生物多样性热点区域之一。通过查阅文献及书籍等资料,该文系统整理了东南亚兰科植物物种种类及其扩散演化历史,并对其生活习性和传粉系统进行了归类。结果表明:(1)东南亚兰科植物8 855种,分属5亚科17族26亚族240属;(2)主要生活型为附生的有127属6 000种以上,地生97属2 000种以上,腐生13属约100种,藤本4属40余种;(3)根据整理出的东南亚79个属的兰科植物传粉系统发现,有44个属含有自动自交的物种,具报酬物的传粉系统有花粉(仅见于拟兰亚科)、芳香类物质(仅见于香荚兰亚科)和花蜜(5个亚科均有)等报酬物类型。欺骗性传粉系统广泛存在于各个亚科,包括食源性欺骗、性拟态、繁殖地拟态和信息素拟态等类型。东南亚兰科植物在物种、生活习性及传粉系统都展现出极高的多样性,对这些生物学特点的总结将为兰科植物的保育提供一定的理论基础和本底资料。  相似文献   

17.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   

18.
The status of subfamilies and genera within Chondracanthidae Milne Edwards, 1840 has recently been revised. Forty four genera are currently recognised as valid for the Chondracanthidae and a comprehensive catalogue to the valid genera and species of the family is presented here. In addition, numerous supplementary observations are presented on existing taxa for which incomplete or inadequate data were previously available.  相似文献   

19.
The Asclepiadaceae, as traditionally defined, have repeatedly been shown to be an apomorphic derivative of the Apocynaceae. It has often been recommended that the Asclepiadaceae be subsumed within the Apocynaceae in order to make the latter monophyletic. To date, however, no comprehensive, unified classification has been established. Here we provide a unified classification for the Apocynaceae, which consists of 424 genera distributed among five subfamilies: Rauvolfioideae, Apocynoideae, Periplocoideae, Secamonoideae, and Asclepiadoideae. Keys to the subfamilies and tribes are provided, with lists of genera that (as far as we have been able to ascertain) are recognized in each tribe.  相似文献   

20.
The fauna of bloodsucking Diptera of northwestern Russia comprises 226 species of mosquitoes (Culicidae), biting midges (Ceratopogonidae), black flies (Simuliidae) and horseflies (Tabanidae). In particular, Culicidae include 41 species from 10 subgenera of 5 genera of 2 subfamilies. Simuliidae are represented by 110 species of 23 genera, belonging to 6 tribes of 2 subfamilies; the genus Culicoides of the Ceratopogonidae, by 31 species; and Tabanidae, by 44 species of 7 genera from 2 subfamilies. There is a necessity of elaboration and application of more advanced forms of information storage and field data standardization. In the Zoological Institute, Russian Academy of Sciences, a special database on the bloodsucking insects of Russia is created in the DBMS Access. A list of abundant bloodsucking species of mosquitoes, biting midges, black flies and horseflies is included. A brief synopsis of bibliography of investigations of the bloodsucking dipterans from northwestern Russia is given, provided with a list of more then 190 publication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号