首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of N-linked glycosylation in protein maturation and transport has been studied by using the simian virus 5 hemagglutinin-neuraminidase (HN) protein, a model class II integral membrane glycoprotein. The sites of N-linked glycosylation on HN were identified by eliminating each of the potential sites for N-linked glycosylation by oligonucleotide-directed mutagenesis on a cDNA clone. Expression of the mutant HN proteins in eucaryotic cells indicated that four sites are used in the HN glycoprotein for the addition of N-linked oligosaccharide chains. These functional glycosylation sites were systematically eliminated in various combinations from HN to form a panel of mutants in which the roles of individual carbohydrate chains and groups of carbohydrate chains could be analyzed. Alterations in the normal glycosylation pattern resulted in the impairment of HN protein folding and assembly which, in turn, affected the intracellular transport of HN. The severity of the consequences on HN maturation depended on both the number of deleted carbohydrate sites and their position in the HN molecule. Analysis of the reactivity pattern of HN conformation-specific monoclonal antibodies with the mutant HN proteins indicated that one specific carbohydrate chain plays a major role in promoting the correct folding of HN. Another carbohydrate chain, which is not essential for the initial folding of HN was found to play a role in preventing the aggregation of HN oligomers. The HN molecules which were misfolded, owing to their altered glycosylation pattern, were retained in the endoplasmic reticulum. Double-label immunofluorescence experiments indicate that misfolded HN and folded HN are segregated in the same cell. Misfolded HN forms disulfide-linked aggregates and is stably associated with the resident endoplasmic reticulum protein, GRP78-BiP, whereas wild-type HN forms a specific and transient complex with GRP78-BiP during its folding process.  相似文献   

2.
3.
The endoplasmic reticulum (ER)-localized chaperone protein, GRP78-BiP, is involved in the folding and oligomerization of secreted and membrane proteins, including the simian virus 5 hemagglutinin-neuraminidase (HN) glycoprotein. To understand this interaction better, we have constructed a series of HN mutants in which specific portions of the extracytoplasmic domain have been deleted. Analysis of these mutant polypeptides expressed in CV-1 cells have indicated that GRP78-BiP binds to selective sequences in HN and that there exists more than a single site of interaction. Mutant polypeptides have been characterized that are competent and incompetent for association with GRP78-BiP. These mutants have been used to show that the induction of GRP78-BiP synthesis due to the presence of nonnative protein molecules in the ER is dependent on GRP78-BiP complex formation with its substrates. These studies have implications for the function of the GRP78-BiP protein and the mechanism by which the gene is regulated.  相似文献   

4.
《The Journal of cell biology》1989,109(6):3273-3289
The hemagglutinin-neuraminidase (HN) glycoprotein of the paramyxovirus SV5 is a type II integral membrane protein that is expressed at the infected cell surface. The intracellular assembly and transport of HN in CV1 cells was examined using conformation-specific HN mAbs and sucrose density sedimentation analysis. HN was found to oligomerize with a t1/2 of 25-30 min and these data suggest the oligomer is a tetramer consisting primarily of two noncovalently associated disulfide- linked dimers. As HN oligomers could be found that were sensitive to endoglycosidase H digestion and oligomers formed in the presence of the ER to the Golgi complex transport inhibitor, carbonylcyanide m- chlorophenylhydrazone (CCCP), these data are consistent with HN oligomerization occurring in the ER. Unfolded or immature HN molecules that could not be recognized by conformation-specific antibodies were found to specifically associate with the resident ER protein GRP78-BiP. Immunoprecipitation of BiP-HN complexes with an immunoglobulin heavy- chain binding protein (BiP) antibody indicated that newly synthesized HN associated and dissociated from GRP78-BiP (t1/2 20-25 min) in an inverse correlation with the gain in reactivity with a HN conformation- specific antibody, suggesting that the transient association of GRP78- BiP with immature HN is part of the normal HN maturation pathway. After pulse-labeling of HN in infected cells, it was found that HN is rapidly turned over in cells (t1/2 2-2.5 h). This led to the finding that the vast majority of HN expressed at the cell surface, rather than being incorporated into budding virions, is internalized and degraded after localization to endocytic vesicles and lysosomes.  相似文献   

5.
The vesicular stomatitis virus glycoprotein (G protein) is an integral membrane protein which assembles into noncovalently associated trimers before transport from the endoplasmic reticulum. In this study we have examined the folding and oligomeric assembly of twelve mutant G proteins with alterations in the cytoplasmic, transmembrane, or ectodomains. Through the use of conformation-specific antibodies, we found that newly synthesized G protein folded into a conformation similar to the mature form within 1-3 min of synthesis and before trimer formation. Mutant proteins not capable of undergoing correct initial folding did not trimerize, were not transported, and were found in large aggregates. They had, as a rule, mutations in the ectodomain, including several with altered glycosylation patterns. In contrast, mutations in the cytoplasmic domain generally had little effect on folding and trimerization. These mutant proteins, whose ectodomains were identical to the wild-type by several assays, were either transported to the cell surface slowly or not at all. We concluded that while correct ectodomain folding and trimer formation are prerequisites for transport, they alone are not sufficient. The results suggest that the cytoplasmic domain of the wild-type protein may facilitate rapid, efficient transport from the ER, which can be easily affected or eliminated by tail mutations that do not detectably affect the ectodomain.  相似文献   

6.
The 78,000-dalton glucose-regulated protein (GRP78) and the immunoglobulin heavy-chain-binding protein (BiP) were shown to be the same protein by NH2-terminal sequence comparison. Immunoprecipitation of GRP78-BiP induced by glucose starvation and a temperature-sensitive mutation in a hamster fibroblast cell line demonstrated the association of GRP78-BiP with other cellular proteins. In both fibroblasts and lymphoid cells, GRP78-BiP was found to label with 32Pi and [3H]adenosine. Phosphoamino acid analysis demonstrated that GRP78-BiP is phosphorylated on serine and threonine residues. Conditions which induce increased production of GRP78-BiP resulted in decreased incorporation of 32Pi and [3H]adenosine into GRP78-BiP. Furthermore, we report here that the phosphorylated form of BiP resides in the endoplasmic reticulum and that BiP which is associated with heavy chains is not phosphorylated or labeled with [3H]adenosine, whereas free BiP is. This suggests that posttranslational modifications may be important in regulating the synthesis and binding of BiP.  相似文献   

7.
P L Earl  B Moss    R W Doms 《Journal of virology》1991,65(4):2047-2055
A detailed kinetic and quantitative analysis of the early and late biosynthetic events undergone by the human immunodeficiency virus type 1 envelope protein expressed by a recombinant vaccinia virus was performed. Early folding events that occurred in the endoplasmic reticulum included disulfide bond formation (t1/2 approximately 10 min), folding of envelope protein into a form competent to bind CD4 (t1/2 approximately 15 min), and specific and transient association and dissociation with GRP78-BiP (t1/2 approximately 25 min). After initial folding, envelope protein monomers formed noncovalently associated dimers with high efficiency (t1/2 approximately 30 min). Studies with brefeldin A, a compound that inhibits endoplasmic reticulum-to-Golgi transport, suggested that assembly occurred in the endoplasmic reticulum while cleavage of gp160 into gp120/gp41 subunits occurred in a post-endoplasmic reticulum compartment. Transport to the Golgi was monitored by modification of N-linked sugars to forms partially resistant to endoglycosidase H. The kinetics of endoglycosidase H resistance were nearly identical to the kinetics of gp160 cleavage (t1/2 approximately 80 min). Cleavage efficiency was strongly cell type dependent, ranging from 13 to 70%. By contrast, approximately 50% of the gp120 generated by the cleavage event was shed (t1/2 approximately 120 min) regardless of the cell type used. The results are discussed in terms of the overall biosynthetic pathway of the envelope protein and provide a framework with which to assess the effects of mutations on structure and function.  相似文献   

8.
Madin-Darby canine kidney (MDCK) cells and Chinese hamster ovary (CHO) cells were transfected with wild-type and cytoplasmic deletion mutants of mouse syndecan-1 to study the requirements for transport and polarized expression of this proteoglycan. Expression in MDCK cells revealed that wild-type syndecan-1 is directed to the basolateral surface via a brefeldin A-insensitive route. A deletion of the last 12 amino acids of the syndecan-1 cytoplasmic tail (CT22) was sufficient to result in the appearance of mutant proteoglycans at both the basolateral and apical cell surfaces. Treatment with brefeldin A was able to prevent apical transport of the mutants. We thus propose that the C-terminal part of the cytoplasmic tail is required for steady-state basolateral distribution of syndecan-1. In CHO cells a deletion of the last 25 or 33 amino acids of the 34-residue cytoplasmic domain (CT9 and CT1, respectively) resulted in partial retention of the mutants in the endoplasmic reticulum (ER). A deletion mutant lacking the last 12 amino acids (CT22) was not retained. Interestingly, the unglycosylated core proteins of the CT9 and CT1 mutants showed a significantly lower apparent molecular weight when analyzed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis than wild-type syndecan-1. However, when CHO transfectants expressing the CT1 mutant were incubated with brefeldin A, causing fusion of the ER and Golgi, CT1 ran with an almost equally high apparent molecular weight as the wild-type molecule. This would suggest that syndecan-1 undergoes extensive posttranslational modifications or forms an SDS-resistant dimer/complex after transit from the ER.  相似文献   

9.
Based on subcellular fractionation data, the following maturation pathways were proposed for the Newcastle disease virus glycoproteins. During or shortly after synthesis in rough endoplasmic reticulum, hemagglutinin-neuraminidase (HN) and fusion (F0) glycoproteins underwent dolichol pyrophosphate-mediated glycosylation, and HN assumed a partially trypsin-resistant conformation. HN began to associate into disulfide-linked dimers in rough endoplasmic reticulum, and at least one of its oligosaccharide side chains was processed to a complex form en route to the cell surface. During migration in intracellular membranes, F0 was proteolytically cleaved to F1.2. Neither HN nor F1,2 required oligosaccharide side chains for migration to plasma membranes, and cleavage of F0 also occurred without glycosylation. Virion- and plasma membrane-associated HN contained both complex and high-mannose oligosaccharide chains on the same molecule, and F1,2 contained at least high-mannose forms. Several of the properties of HN were notable for a viral glycoprotein. The oligosaccharide side chains of HN were modified very slowly in chick cells, whereas those of the G glycoprotein of vesicular stomatitis virus were rapidly processed to a complex form. Therefore, their different rates of migration and carbohydrate processing were intrinsic properties of these glycoproteins. Consistent with its slow maturation, the HN glycopolypeptide accumulated to high levels in intracellular membranes as well as in plasma membranes. Intracellular HN contained immature oligosaccharide side chains, suggesting that it accumulated in the pre-Golgi/Golgi segment of the maturation pathway. The major site of accumulation of mature HN with neuraminidase activity was the plasma membrane.  相似文献   

10.
The early transmembrane glycoprotein E19 of adenovirus-2 binds to class I antigens of the major histocompatibility complex (MHC). The association is initiated in the endoplasmic reticulum of infected cells and abrogates the intracellular transport of the class I molecules. To examine which parts of the E19 molecule are responsible for the association with the class I antigens and which parts confine the protein to the endoplasmic reticulum we have constructed a series of mutated E19 genes, which have been expressed in an improved mammalian expression vector. By various manipulations the membrane anchoring and the cytoplasmic domains were removed from the protein. The biosynthesis of the mutant protein was examined. All mutant proteins were secreted from the cells suggesting that the transmembrane and/or cytoplasmic portions of the E19 molecule are responsible for its confinement to the endoplasmic reticulum. The ability to associate with class I antigens was retained by the lumenal domain of the E19 protein.  相似文献   

11.
The signal for retention in the endoplasmic reticulum of the E3/19K protein of adenovirus type 2 is located within the carboxyl-terminal cytoplasmic extension. A synthetic peptide corresponding to this sequence showed affinity for beta-tubulin, could promote tubulin polymerization in vitro, and bound to taxol-polymerized microtubules. When compared with the microtubule binding sequences from two microtubule-associated proteins (MAPs; MAP2 and tau), we found similarities suggesting that the cytoplasmic tail might bind to tubulin/microtubules in a MAPs-like fashion. A synthetic peptide corresponding to the cytoplasmic tail of an E3/19K deletion mutant not retained in the endoplasmic reticulum was also tested. It had the same net charge but did not promote tubulin polymerization in vitro nor did it show measurable affinity for tubulin or microtubules. This indicates that binding to microtubules is important for retention of the E3/19K protein in the endoplasmic reticulum.  相似文献   

12.
The initial step of the intracellular transport of G protein-coupled receptors, their insertion into the membrane of the endoplasmic reticulum, follows one of two different pathways. Whereas one group uses the first transmembrane domain of the mature receptor as an uncleaved signal anchor sequence for this process, a second group possesses additional cleavable signal peptides. The reason this second subset requires the additional signal peptide is not known. Here we have assessed the functional significance of the signal peptide of the endothelin B (ET(B)) receptor in transiently transfected COS.M6 cells. A green fluorescent protein-tagged ET(B) receptor mutant lacking the signal peptide was nonfunctional and retained in the endoplasmic reticulum, suggesting that it has a folding defect. To determine the defect in more detail, ET(B) receptor fragments containing the N-terminal tail, first transmembrane domain, and first cytoplasmic loop were constructed. We assessed N tail translocation across the endoplasmic reticulum membrane in the presence and absence of a signal peptide and show that the signal peptide is necessary for N tail translocation. We postulate that signal peptides are necessary for those G protein-coupled receptors for which post-translational translocation of the N terminus is impaired or blocked by the presence of stably folded domains.  相似文献   

13.
We isolated mutants whose vaccinia hemagglutinin (HA) accumulates on nuclear envelopes and the rough endoplasmic reticulum. Mutant HA must be blocked at a pre-Golgi step because it has high-mannose-type carbohydrates but no fucose. Neither N- nor O-glycosidically linked carbohydrates are involved in the transport defect of the mutant HA, because tunicamycin, an inhibitor of N-type glycosylation, has no effect, and O-type glycosylation takes place in the Golgi organelle. The unglycosylated form of the mutant HA synthesized in the presence of tunicamycin is 3000 daltons larger than the wild type. This higher molecular weight is related to the transport defect. HAs translated in vitro also show this difference, evidence that it reflects mutation in the HA structural gene. Portions of HAs that project into the cytoplasm seem to account for this weight difference. Thus the cytoplasmic tail of glycoprotein has an important function in transport out of the rough endoplasmic reticulum.  相似文献   

14.
To investigate the function of heavy chain binding protein (BiP, GRP 78) in the endoplasmic reticulum, we have characterized its interaction with a model plasma membrane glycoprotein, the G protein of vesicular stomatitis virus. We used a panel of well characterized mutant G proteins and immunoprecipitation with anti-BiP antibodies to determine if BiP interacted with newly synthesized G protein and/or mutant G proteins retained in the endoplasmic reticulum. We made three major observations: 1) BiP bound transiently to folding intermediates of wild-type G protein which were incompletely disulfide-bonded; 2) BiP did not bind stably to all mutant G proteins which remain in the endoplasmic reticulum; and 3) BiP bound stably only to mutant G proteins which do not form correct intrachain disulfide bonds.  相似文献   

15.
Many G-protein-coupled receptors, including the alpha(1b)-adrenoceptor, form homo-dimers or oligomers. Mutation of hydrophobic residues in transmembrane domains I and IV alters the organization of the alpha(1b)-adrenoceptor oligomer, with transmembrane domain IV playing a critical role. These mutations also result in endoplasmic reticulum trapping of the receptor. Following stable expression of this alpha(1b)-adrenoceptor mutant, cell surface delivery, receptor function and structural organization were recovered by treatment with a range of alpha(1b)-adrenoceptor antagonists that acted at the level of the endoplasmic reticulum. This was accompanied by maturation of the mutant receptor to a terminally N-glycosylated form, and only this mature form was trafficked to the cell surface. Co-expression of the mutant receptor with an otherwise wild-type form of the alpha(1b)-adrenoceptor that is unable to bind ligands resulted in this wild-type variant also being retained in the endoplasmic reticulum. Ligand-induced cell surface delivery of the mutant alpha(1b)-adrenoceptor now allowed co-recovery to the plasma membrane of the ligand-binding-deficient mutant. These results demonstrate that interactions between alpha(1b)-adrenoceptor monomers occur at an early stage in protein synthesis, that ligands of the alpha(1b)-adrenoceptor can act as pharmacological chaperones to allow a structurally compromised form of the receptor to pass cellular quality control, that the mutated receptor is not inherently deficient in function and that an oligomeric assembly of ligand-binding-competent and -incompetent forms of the alpha(1b)-adrenoceptor can be trafficked to the cell surface by binding of a ligand to only one component of the receptor oligomer.  相似文献   

16.
The MHC class II-associated invariant chain behaves as a resident endoplasmic reticulum protein in the absence of class II molecules. In humans, two predominant forms exist; one, p35, differs from the other, p33, by an N-terminal cytoplasmic extension of 16 amino acids that contains a strong endoplasmic reticulum-retention signal. Here we show that one mechanism for retention of p33 is its association with p35 in mixed invariant chain trimers. However, even for p33 homotrimers transport from the endoplasmic reticulum is inefficient. In an MHC class II-positive B cell line, the formation of invariant chain trimers is rapid and is the first intermediate in the assembly of a nine-chain alpha beta-invariant chain complex. With time, three higher molecular weight complexes are progressively formed. These correspond to an invariant chain trimer with one alpha beta dimer, two alpha beta dimers, and three alpha beta dimers, respectively. No free alpha beta dimers are detectable early in biosynthesis. However, beginning at 2 h of chase, alpha beta dimers begin to appear concomitant with the disappearance of the completely assembled alpha beta-invariant chain complex. This conversion is virtually complete by 4 h, and presumably reflects the proteolytic degradation of the invariant chain component of the alpha beta-invariant chain complex and the generation of endosomal alpha beta dimers capable of binding antigenic peptides.  相似文献   

17.
Q Yao  R W Compans 《Journal of virology》1995,69(11):7045-7053
We have investigated the roles of the cytoplasmic domains of the human parainfluenza virus type 2 (PI2) and type 3 (PI3) fusion (F) proteins in protein transport and cell fusion activity. By using the vaccinia virus-T7 transient expression system, a series of F protein cytoplasmic tail truncation mutants was studied with respect to intracellular and surface expression and the ability to induce cell fusion when coexpressed with the corresponding hemagglutinin-neuraminidase (HN) proteins. All of the cytoplasmic tail truncation mutants of PI2F were expressed at high levels intracellularly or on cell surfaces as measured by immunoprecipitation and cell surface biotinylation assays. In addition, when coexpressed with PI2HN, these truncation mutants of PI2F were all found to be essentially unimpaired in the ability to induce cell fusion as measured by a quantitative cell fusion assay. In contrast, surface expression and cell fusion activity were found to be eliminated by a mutant of PI3F in which the entire cytoplasmic tail was deleted, and the mutant protein appeared to be unable to assemble into a high-molecular-weight oligomeric structure. To further investigate whether there is a specific sequence requirement in the cytoplasmic tail of PI3F, a chimeric protein consisting of the PI3F extracellular and transmembrane domains and the PI2F cytoplasmic tail was constructed. This chimeric protein was detected on the surface, and it was capable of inducing cell fusion when expressed together with PI3HN, although the fusogenic activity was reduced compared with that of wild-type PI3F. These results demonstrate that although PI2 and PI3 viruses belong to the same parainfluenza virus genus, these viruses show marked differences with respect to functional requirements for the cytoplasmic tail of the F glycoprotein.  相似文献   

18.
At the surface of antigen-presenting cells MHC class I and class II molecules present peptides to respectively CD8+ and CD4+ T cells. MHC class I molecules acquire peptides right after synthesis in the endoplasmic reticulum. MHC class II molecules do not acquire peptides in the endoplasmic reticulum but instead associate with a third chain, the invariant chain which impedes peptide binding. Subsequently the invariant chain takes MHC class II molecules to the endosomal/lysosomal compartment thanks to a targeting signal retained in its cytoplasmic tail. It then dissociates from the MHC class II dimer to allow it to bind peptides.  相似文献   

19.
Kang SJ  Cresswell P 《The EMBO journal》2002,21(7):1650-1660
CD1 family members are antigen-presenting molecules capable of presenting bacterial or synthetic glycolipids to T cells. Here we show that a subset of human CD1d molecules are associated with major histocompatibility complex (MHC) class II molecules, both on the cell surface and in the late endosomal/lysosomal compartments where class II molecules transiently accumulate during transport. The interaction is initiated in the endoplasmic reticulum with class II-invariant chain complexes and appears to be maintained throughout the class II trafficking pathway. A truncated form of CD1d which lacks its cytoplasmic YXXZ internalization motif is transported to late endosomal/lysosomal compartments in the presence of class II molecules. Furthermore, the same CD1d deletion mutant is targeted to lysosomal compartments in HeLa cells expressing class II molecules and invariant chain by transfection. The deletion mutant was also found in lysosomal compartments in HeLa cells expressing only the p33 form of the invariant chain. These data suggest that the intracellular trafficking pathway of CD1d may be altered by class II molecules and invariant chain induced during inflammation.  相似文献   

20.
Avian perivitelline membrane, an investment homologous to the mammalian zona pellucida, is composed of at least two glycoproteins. Our previous studies demonstrated that one of its components, ZPC, which is synthesized in the ovarian granulosa cells, is secreted after carboxy-terminal proteolytic processing, and this event is a prerequisite event for ZPC secretion in quail. In the present study, we examined the role of the cytoplasmic tail, which is successfully removed after proteolytic processing, in membrane transport, proteolytic processing, and the secretion of quail ZPC. In pursuit of this, we produced a truncated ZPC mutant lacking the cytoplasmic tail located in its C-terminus and examined its expression in the mammalian cell line. Western blot analyses demonstrated that the cytoplasmic tail-deficient ZPC was neither secreted nor underwent proteolytic processing in the cells. Immunofluorescence analysis and the acquisition of resistance to endoglycosidase H digestion of the cytoplasmic tail-deficient ZPC demonstrated that the deletion of the cytoplasmic tail interferes with the intracellular trafficking of the protein from the endoplasmic reticulum to the Golgi apparatus. These results indicate that the cytoplasmic tail of quail ZPC might possess the determinant responsible for the efficient transport of the newly synthesized ZPC from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号