首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 24-hour rhythms of pineal norepinephrine (NE) content and serotonin (5-HT) turnover [estimated from the ratio of 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT] were studied in young (2 months) and aged (18-20 months) Wistar rats killed at 6 different time points throughout a 24-hour cycle. In the first study, significant changes dependent on the time of day were identified, with acrophases in the first half of the activity span for both parameters. Old rats showed significantly smaller mesor and amplitude of the 24-hour rhythm of pineal NE content. They also showed decreased amplitude of the pineal 5-HT turnover rhythm, in the absence of changes in mesor. In old rats, pineal 5-HT and 5-HIAA concentrations were 41-47% of those found in young rats. In a second study, young and old rats received daily intraperitoneal injections of melatonin (30 microg) or vehicle for 11 days at 19.00 h (i.e. 11 h after light on). Analyzed as a main factor in a factorial analysis of variance, both pineal NE content and 5-HT turnover decreased in old rats while pineal 5-HT turnover increased after melatonin treatment. Melatonin treatment augmented the amplitude of the 24-hour rhythm of pineal NE content by 120 and 52% in young and old rats, respectively. The amplitude of the 24-hour rhythm of pineal 5-HT turnover almost doubled after melatonin treatment in young rats and did not change in old rats. Melatonin injection did not modify the rhythm's acrophase. The results indicate that old rats had lower amplitude and lower mesor values of 24-hour variations in pineal NE content and 5-HT turnover. Melatonin treatment only partly restored pineal NE content and was devoid of activity on pineal 5-HT turnover and 5-HT and 5-HIAA concentration in old rats. Impairment of pineal melatonin synthesizing capacity and intrapineal responses to melatonin may underlie pineal aging in rats.  相似文献   

2.
5-day morning injections to pubertal male rats of polypeptide epithalamin preparation obtained from cattle epiphysis, in dose of 0.25 mg/100 g body mass induced the increase of serotonin epiphyseal concentration night peak, N-acetylserotonin and melatonin and didn't produce any essential influence on 5-methoxytryptamine, 5-oxy- and 5-methoxyindoleacetic acid level. It has been concluded, that epiphyseal peptides and indoles interact according to ultrashort connection, epiphyseal peptides point of application is the reaction of tryptophan transformation into serotonin and its further metabolism in N-acetylserotonin and melatonin. It has been suggested that the increase of epiphyseal melatonin production is on the basis of epithalamin therapeutic action.  相似文献   

3.
Daily treatment of hemicastrated young rats with 0.57 mug of stilbestrol inhibited compensatory ovarian hypertrophy (COH) by 48% in the 3-month animals and by 3% only in the 18-month animals. Administration of L-DOPA, dilantin, epithalamin or phenoformin with the same dose of estrogen to old rats suppressed the COH by 65-98%. L-DOPA and epithalamin were effective when administered into the 3rd cerebral ventricle. A functional nature of the age changes in the hypothalamic sensitivity to the estrogen action is suggested.  相似文献   

4.
The effects of a single-shot intraperitoneally administration of melatonin in a dose of 1 mg per kg body weight and epithalamin in a dose of 2.5 mg per kg body weight on the activities of Na+, K(+)-ATPase and 5'-nucleotidase were investigated in the forebrain of juvenile male white rats under the acute hypobaric hypoxia. The melatonin and epithalamin administration against the background of acute hypoxia prevented an acute hypoxia inducing decrease in the activity of Na+, K(+)-ATPase as well as increased in the activity of 5'-nucleotidase. Such effects of pineal hormones can promote antihypoxic protection of neurons.  相似文献   

5.
Djeridane Y  Touitou Y 《Steroids》2004,69(5):343-349
This study investigates the effects of acute and chronic injections of the neurosteroid dehydroepiandrosterone (DHEA) and its sulfate DHEA-S on pineal gland melatonin synthesis. Pineal melatonin production and plasma melatonin levels were investigated in young (9-week-old) and old (27-month-old) male Wistar rats. DHEA or DHEA-S have been administered acutely in a single intraperitoneal injection at a dosage of 50, 250, or 500 microg per animal, or on a long-term basis, i.e., for 8 days at a dosage of 100 microg per animal, 1 h before the onset of darkness. DHEA, at a dose of 50, 250, or 500 microg per animal, administered acutely to rats had no significant effects on pineal melatonin production whatever the age of the animals. In contrast, 500 microg DHEA-S induced a significant increase in the pineal melatonin content (15% in young animals and 35% in old animals) and the activity of N-acetyltransferase, the rate-limiting enzyme for melatonin synthesis in the pineal gland, (40% in young animals and 20% in old animals), without altering the activity of hydroxyindole-O-methyltransferase whatever the age of the animals. At lower concentrations (50 or 250 microg) DHEA-S had no effect on pineal melatonin production regardless of the age of the rats. Chronic injection of DHEA or DHEA-S at a dose of 100 microg had no effect on pineal melatonin or NAT and HIOMT activities in the two age groups. This work shows that DHEA-S (and not DHEA) is able, at pharmacological concentrations, to stimulate melatonin production by rat pineal glands regardless of the age of the animals.  相似文献   

6.
Pineal function was studied in Wistar pubertal male rats in summer and winter. It was demonstrated that the pineal weight is inversely related to the day length, increasing in winter and reducing in summer. In winter pineal serotonin is actively metabolized via N-acetylation and subsequent ortho-methylation to form N-acetyl serotonin and melatonin as well as via oxidative deamination followed by ortho-methylation to form 5-hydroxyindolacetic and 5-methoxyindolacetic acids. In summer serotonin metabolism in the pinealocytes changes to direct ortho-methylation of serotonin to form 5-methoxytryptamine. The decreased level of N-acetyltransferase limits the formation of melatonin in the pineal gland in summer.  相似文献   

7.
B Selmaoui  Y Touitou 《Life sciences》1999,64(24):2291-2297
In a previous study we have shown that exposure to a 50-Hz sinusoidal magnetic field decreased serum melatonin concentration and pineal enzyme activities in young rats (9 weeks). In the present study we looked for the effect of a magnetic field of 100 microT on serum melatonin and pineal NAT activity in aged rats and compared them to young rats. We hypothesized that aging may change sensitivity of rats to a magnetic field. Two groups of Wistar male rats [aged rats (23 months) and young rats (9 weeks)] were exposed to 50-Hz magnetic fields of 100 microT for one week (18h/day). The animals were kept under a standard 12:12 light: dark cycle with a temperature of 25 degrees C and a relative humidity of 45 to 50%. Control (sham-exposed) animals were kept in a similar environment but without exposure to a magnetic field. The animals were sacrificed under red dim light. Serum melatonin concentration and pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) activities were studied. Our results showed that sinusoidal magnetic fields altered the production of melatonin (28% decrease; P <0.05) through an inhibition of pineal NAT activity (52% decrease; P <0.05) in the young rats whereas no effect was observed in aged ones. On the other hand, when comparing data from control animals between young and aged rats, we observed that serum melatonin level and NAT activity, but not HIOMT activity, decreased in aged rats (decrease by about 38% and 36% respectively). Our data strongly suggest that old rats are insensitive to the magnetic field.  相似文献   

8.
The nocturnal stimulation of pineal melatonin synthesis and elevation of serum melatonin is known to be reduced in old age in several species. In Wistar rats the capacity of the beta-adrenoceptor to develop supersensitivity (increase in Bmax) during the light period of the diurnal light/dark cycle is lost during maturation (3-6 months) rather than old age. Further, the present study shows that neither the alpha 1- nor beta-adrenoceptor density of the pineal declines as rats age. Pineal hydroxyindole-O-methyltransferase activity does fall (17-55%) in rats after 18 months of age, but nocturnal pineal arylalkylamine N-acetyltransferase activity is not significantly altered. Thus, from examination of these parameters across the life span of the rat, it seems likely that the reported reduction in serum melatonin in old animals is related to a reduced capacity of the pineal to synthesize melatonin, rather than an altered responsiveness of the gland to neural stimulation.  相似文献   

9.
To determine if exogenously administered alpha-melanocyte stimulating hormone (alpha-MSH) affects nighttime pineal N-acetyltransferase activity, pineal levels of 5-hydroxytryptophan, serotonin and melatonin, and plasma prolactin levels, adult male hamsters were injected at 1900 hr (lights out 2000-0600 hr) with two doses of the peptide and killed at 0300 hr. The low dose of alpha-MSH (200 ng) produced a significant fall in pineal serotonin, pineal NAT activity and plasma prolactin values. The high dose of the peptide (20 micrograms) increased circulating prolactin titers and pineal serotonin levels and caused a concomitant decrease in pineal melatonin levels.  相似文献   

10.
Pineal levels of tryptophan, 5-hydroxytryptophan, serotonin, N-acetylserotonin, melatonin, 5-hydroxyindoleacetic acid and the enzyme activities of N-acetyltransferase and hydroxyindole-O-methyltransferase were determined in male albino rats and Syrian hamsters that were injected with insulin twice daily for three days, or injected with streptozotocin to induce diabetes. Neither insulin injections nor streptozotocin diabetes had any effect on pineal melatonin production in rats. In hamsters, diabetes reduced the nocturnal peak of pineal melatonin content by approximately one half, while insulin injections had no effect on pineal melatonin levels; however, insulin injections did cause a slight increase in pineal N-acetyltransferase activity. These findings indicate that the pineal gland of the hamster may be more sensitive to alterations in plasma insulin levels than the same organ in rats.  相似文献   

11.
Night-time pineal levels of tryptophan, 5-hydroxytryptophan, serotonin, N-acetylserotonin, melatonin, 5-hydroxyindoleacetic acid and the activities of the two enzymes N-acetyltransferase and hydroxyindole-O-methyltransferase involved in the cyclic production of melatonin were determined in male albino rats and Syrian hamsters that were implanted with thyroxine or thyroidectomized two weeks earlier. Both treatments depressed nocturnal pineal melatonin content in rats and hamsters. The cause of this depression is not known, although minor alterations in the substrates and the enzymes involved in melatonin production were observed. The data suggest that alterations in thyroid hormone levels may increase the release of nocturnal melatonin from the pineal, thereby allowing less to accumulate in the gland.  相似文献   

12.
The time course for the decrease in norepinephrine concentration of rat pineal explants in culture indicated a significant fall starting at the 4th hour and completed after 16-24 h of incubation. Significant decreases of serotonin and 5-hydroxyindoleacetic acid (HIAA) levels in tissue, an increase of HIAA/serotonin ratio, and an increase of melatonin production rate in vitro were also observed as a function of the incubation time. Estradiol (10(-7)-10(-5) M) increased rat pineal melatonin content, testosterone (10(-5) M) decreased it and progesterone was devoid of activity when incubated with explants for up to 6 h. The in vitro stimulatory effect of estradiol on rat pineal methoxyindole synthesis was blocked by propranolol but not by phentolamine; propranolol also blocked the increase of nuclear estradiol-receptor complex produced by estrogen exposure of pineal explants. TSH (1-100 ng/ml), growth hormone (10-100 ng/ml) and LH (10 ng/ml) augmented rat pineal melatonin content while 100 ng/ml of FSH decreased it significantly. Prolactin exerted a biphasic effect on rat pineal explants, the lowest concentration augmenting melatonin content while the high concentration depressed it. Deep, intermediate and superficial segments of guinea-pig pineal glands showed an increase in melatonin concentration after a 6-h incubation in the presence of 10(-7)-10(-5) M estradiol.  相似文献   

13.
Locally synthesized angiotensin modulates pineal melatonin generation   总被引:1,自引:0,他引:1  
We aimed to study the mechanisms and the significance of the influence exerted by the renin-angiotensin system (RAS) on the pineal melatonin production. Pineal melatonin and other indoles were determined by HPLC with electrochemical detection after angiotensin AT1-receptor blockade with Losartan in vivo or in cultured glands. N-acetyltransferase (NAT) activity was radiometricaly measured. To test the in vivo relevance of the local RAS, pineal melatonin and its indole precursors were determined in transgenic rats with inhibited production of angiotensinogen exclusively in astrocytes, TGR(ASrAOGEN). Tryptophan hydroxylase (TPH) and NAT mRNA levels were determined by real-time RT-PCR. Pineal melatonin content was significantly decreased by AT1-receptor blockade in vivo, in cultured glands and in TGR(ASrAOGEN) (35%, 32.4% and 17.5% from control, respectively). Losartan produced a significant decrease of pineal 5-hydroxytryptophan, serotonin, 5-hydroxyindole acetic acid and N-acetylserotonin in pineal cultures. Also, the pineal content of the precursor indoles in TGR(ASrAOGEN) rats was significantly lowered. The reduction of 5-hydroxytryptophan levels by 33-75% in both in vivo and in vitro studies suggests a decreased activity of TPH. Moreover, the TPH mRNA levels in TGR(ASrAOGEN) rats were significantly lower than control rats. On the other hand, NAT activity was unaffected by Losartan in pineal culture and its expression was not significantly different from control in TGR(ASrAOGEN) rats. Our results demonstrate that a local pineal RAS exerts a tonic modulation of indole synthesis by influencing the activity of TPH via AT1-receptors.  相似文献   

14.
L-5-Hydroxytryptophan (L-5-HTP) (20 or 200 mg/kg i.p.) but not L-tryptophan (500 mg/kg i.p.) loading substantially increases serum melatonin in sheep. In the present study we examined the effects of these compounds on pineal serotonin and six serotonin metabolites. L-Tryptophan failed to increase 5-hydroxytryptamine (5-HT; serotonin) or any of its metabolites despite a five-fold increase in pineal tryptophan. In contrast, L-5-HTP loading produced a marked increase in pineal 5-HT and its metabolites, including N-acetylserotonin (NAS) and melatonin, indicating that an increased synthesis of melatonin is responsible for the increased serum melatonin concentration after loading with this precursor. No change in pineal indoleamine N-acetyltransferase (NAT) activity was seen. These results are consistent with the suggestion that, during daytime in the sheep, 5-HT availability may limit the production of melatonin.  相似文献   

15.
Adult AMES mice and male Sprague Dawley rats were exposed to an artificial magnetic field, generated by Helmholtz coils. 3.5 hours after the onset of darkness the coils were activated for one hour resulting in an inversion of the horizontal component of the earth's magnetic field. The coils were activated and deactivated at 5 min intervals during the 1 hour exposure period. In both mice and rats, the levels of serotonin in the pineal were markedly increased by the exposure. In rats, an increase of pineal 5-hydroxyindole acetic acid and a decrease of the activity of the pineal enzyme serotonin-N-acetyltransferase also was observed. However, pineal and serum melatonin levels were not altered. The results indicate that the metabolism of serotonin in the pineal is quickly affected by the exposure of animals to a magnetic field.  相似文献   

16.
N-acetyltransferase (NAT) is believed to be the rate-limiting enzyme in the synthesis of melatonin from serotonin in the pineal gland. Norepinephrine released from sympathetic nerve endings within the pineal gland stimulates NAT activity and, therefore, melatonin synthesis. When an animal is subjected to a stressful stimulus, it would be expected that the increase in plasma stimulus, it would be expected that the increase in plasma catecholamines originating from the adrenal medulla and/or the sympathetic nervous system would result in a stimulation of pineal NAT activity. Adult male rats were given a 1.5cc injection of physiological saline subcutaneously into the back leg. Compared to non-injected controls, animals stressed in this manner were shown to have significantly lower pineal melatonin content 10 min after the saline injection late in the light phase of the light/dark cycle (at 18.30 h-lights on at 07.00 h). To test this more thoroughly, a time course study was conducted during the dark phase (at 02.00 h-5 hours after lights out) when pineal NAT activity and melatonin levels are either increasing or elevated. NAT activity and melatonin levels in the pineal were significantly depressed in stressed animals as compared to controls by 10 min after the saline injection, and remained so until 60 min after injection. By 90 min they had returned to control values. In the next study the nighttime response of the pineal to stress was compared in intact and adrenalectomized rats. Adrenalectomy prevented the changes in NAT activity and melatonin content associated with the saline injection. Some factor, such as a catecholamine or corticosterone from the adrenal, seems to be eliciting the response in the pineal to the saline injection. It is not known if the factor is acting centrally or directly on the pineal gland.  相似文献   

17.
The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.  相似文献   

18.
Isoproterenol (1 mg/kg) was subcutaneously injected into adult male rats during the day to stimulate pineal N-acetyltransferase (NAT) activity and pineal and serum melatonin levels. Two hours after isoproterenol administration when levels of each of these variables had increased significantly, the experimental animals swam for 10 min in 22 degrees C water. At 15 min after swimming onset, pineal and serum melatonin levels were highly significantly depressed compared to those in control animals that did not swim. The high NAT level was not influenced by swimming. In a second study, isoproterenol injected rats swam for either 1, 3, 6 or 10 min and were sampled 15 min after the onset of swimming. The reduction in the elevated pineal melatonin in these animals was correlated with the length of the swim, i.e., as the duration of swim increased the percent reduction in pineal melatonin also increased. Neither pineal NAT nor hydroxyindole-O-methyltransferase (HIOMT) activities were influenced by swimming. The results suggest that elevated pineal and serum melatonin induced by isoproterenol can be depressed with no effect on the activity of the enzymes which convert serotonin to melatonin.  相似文献   

19.
Day/night differences in concentrations of 5-hydroxy and 5-methoxy indole metabolites in the pineal gland of the pigeon are described. A simultaneous determination of 5-hydroxytryptamine (serotonin), 5-hydroxyindoleacetic acid, 5-hydroxytryptophol, N-acetyl-5-hydroxytryptamine (N-acetyl serotonin), 5-methoxyindoleacetic acid, 5-methoxytryptophol, tryptophan, indoleacetic acid and melatonin was accomplished using a recently developed procedure employing high-performance liquid chromatography with electrochemical detection. As in mammalian species, an inverse relationship was observed between N-acetylated indoles and serotonin and its acid metabolites. Melatonin and N-acetyl serotonin were increased approximately three-fold at night to concentrations of 0.730 and 1.79 ng/pineal respectively. Daytime serotonin values were 44.9 +/- 13.0 ng/pineal and decreased to 12.3 +/- 6.5 ng/pineal during the dark phase.  相似文献   

20.
The effect on sexual maturation of 6 different pineal indoles, including melatonin, and of the metabolite 6-hydroxymelatonin was studied in the male rat after daily injections from 20 to 40 days of age. Only 5-methoxytryptamine (5MT) and 6-hydroxymelatonin (6M), in addition to melatonin, inhibited the neuroendocrine-reproductive axis during sexual maturation. Their potencies when injected in the afternoon were in the range of one-twentieth to one-fifth that of melatonin. Like melatonin these two indoles had no effect when injected in the morning. N-acetylserotonin, serotonin, 5-hydroxytryptophol and 5-methoxytryptophol did not influence sexual maturation either when injected in the morning or in the afternoon. Chromatographic separation was performed on plasma extracts from rats injected daily with the biologically active indoles and killed 10-120 min after the last injection. This procedure confirmed that 6M injections did not increase plasma melatonin levels. In contrast, plasma melatonin levels in 5MT-treated rats were increased 1 h after the 5MT injection. These results suggest that 5MT or part of it might be acetylated to melatonin; thus inhibition of sexual maturation might be mainly due to melatonin. These results indirectly support the contention that melatonin is the principal pineal indoleamine playing a role during sexual maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号