首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mefunidone is a new pyridone agent that attenuates renal tubulointerstitial fibrosis. However, the signaling pathways involved in the effect of mefunidone on renal tubulointerstitial fibrosis have not been well explained. Inflammatory response initiates and promotes renal tubulointerstitial fibrosis, and the inhibitor of nuclear factor kappa-B kinase beta (IKKβ) is a master regulator of inflammation. This study is determined to clarify the influence of mefunidone on renal inflammation and the phosphorylation of IKKβ. Experimental renal tubulointerstitial fibrosis was induced by unilateral ureteral obstruction (UUO) for 3, 7 and 14 days in sprague dawley rat. Treatment with mefunidone was conducted simultaneously. Obstructed kidneys were harvested for the assessment. Our results showed that treatment with mefunidone ameliorated renal inflammatory injury, renal tubular lesions and interstitial fibrosis. Further studies indicated that treatment with mefunidone mitigated the expressions of tumor necrosis factorα (TNFα) and interleukin-1β (IL-1β) in the kidney. The phosphorylation of IKKβ and inhibitor of kappa-B (IκB) and the expression of NOD-like receptor family, pyrin domain containing 3 (NALP3) were also reduced in vivo after treatment with mefunidone. In vitro, peritoneal macrophages were incubated with necrotic cells or lipopolysaccharide in the presence or absence of mefunidone. Mefunidone markedly decreased necrotic cell or LPS induced IL-1β production and LPS induced TNFα production in primary peritoneal macrophages. Furthermore, mefunidone significantly inhibited the phosphorylation of IKKβ/IκB and nuclear transition of NF-κB p65 in peritoneal macrophages stimulated by necrotic cell or lipopolysaccharide. In conclusion, mefunidone serves as a novel anti-inflammatory agent that attenuates UUO-induced renal interstitial inflammation and fibrosis, possibly through suppressing IKKβ phosphorylation.  相似文献   

2.
3.
TGF-β signaling plays a principal role in renal fibrosis, but the precise mechanisms and the downstream factors are still largely unknown. Sox9 exhibits diverse roles in regulating the production of extracellular matrix proteins. Here we found that Sox9 was induced by TGF-β in the kidney fibroblast and acted as an important downstream mediator of TGF-β signaling in promoting renal fibrosis. TGF-β/Smad signaling mediated the upregulation of Sox9 in kidney fibroblast by binding to a conserved enhancer. In different mouse models of renal fibrosis, as well as in the kidney biopsy tissue from patients with renal fibrosis, Sox9 expression significantly increased. Immunostaining confirmed the upregulation of Sox9 in the kidney fibroblast during renal fibrosis. Delivery of Sox9 knockdown plasmid to the kidney by ultrasound microbubble–mediated gene transfer suppressed the unilateral ureteral obstruction (UUO) or folic acid-induced mouse renal fibrosis, whereas ectopic expression of Sox9 aggravated renal fibrosis. In addition, we identified Sox9 as a direct target of miR-30. Notably, miR-30 expression was significantly inhibited by TGF-β1 in the kidney fibroblast and the downregulation of miR-30 was observed in renal fibrosis. Mechanistically, inhibition of miR-30 independently strengthened the effect of TGF-β/Smad signaling on Sox9 upregulation. Adenovirus-mediated ectopic expression of miR-30 in kidney fibroblast greatly reduced UUO-induced renal fibrosis by targeting Sox9. These findings link Sox9 to intrinsic mechanisms of TGF-β signaling in renal fibrosis and may have therapeutic potential for tissue fibrosis.  相似文献   

4.
5.

Background

Idiopathic pulmonary fibrosis is a common and invariably fatal disease with limited therapeutic options. Ca2+-activated KCa3.1 potassium channels play a key role in promoting TGFβ1 and bFGF-dependent profibrotic responses in human lung myofibroblasts (HLMFs). We hypothesised that KCa3.1 channel-dependent cell processes regulate HLMF αSMA expression via Smad2/3 signalling pathways.

Methods

In this study we have compared the phenotype of HLMFs derived from non-fibrotic healthy control lungs (NFC) with cells derived from IPF lungs. HLMFs grown in vitro were examined for αSMA expression by immunofluorescence (IF), RT-PCR and flow cytommetry. Basal Smad2/3 signalling was examined by RT-PCR, western blot and immunofluorescence. Two specific and distinct KCa3.1 blockers (TRAM-34 200 nM and ICA-17043 [Senicapoc] 100 nM) were used to determine their effects on HLMF differentiation and the Smad2/3 signalling pathways.

Results

IPF-derived HLMFs demonstrated increased constitutive expression of both α-smooth muscle actin (αSMA) and actin stress fibres, indicative of greater myofibroblast differentiation. This was associated with increased constitutive Smad2/3 mRNA and protein expression, and increased Smad2/3 nuclear localisation. The increased Smad2/3 nuclear localisation was inhibited by removing extracellular Ca2+ or blocking KCa3.1 ion channels with selective KCa3.1 blockers (TRAM-34, ICA-17043). This was accompanied by de-differentiation of IPF-derived HLMFs towards a quiescent fibroblast phenotype as demonstrated by reduced αSMA expression and reduced actin stress fibre formation.

Conclusions

Taken together, these data suggest that Ca2+- and KCa3.1-dependent processes facilitate “constitutive” Smad2/3 signalling in IPF-derived fibroblasts, and thus promote fibroblast to myofibroblast differentiation. Importantly, inhibiting KCa3.1 channels reverses this process. Targeting KCa3.1 may therefore provide a novel and effective approach for the treatment of IPF and there is the potential for the rapid translation of KCa3.1-directed therapy to the clinic.  相似文献   

6.
7.
Raised serum α-fetoprotein levels measured by radioimmunoassay were found in 19 out of 24 (79%) patients with primary liver cancer and in 32 out of 311 (10%) patients with other liver diseases. The rise was transient in cases of hepatitis and a transient rise was also seen after alcohol intake ceased in two patients with cirrhosis. α-Fetoprotein levels exceeding 500 ng/ml were 30-50 times more common in primary liver cancer than in other liver diseases. A rise in level seems to reflect the extent of liver regeneration in liver diseases other than primary cancer.  相似文献   

8.
Collagen VI is a major extracellular matrix (ECM) protein with a critical role in maintaining skeletal muscle functional integrity. Mutations in COL6A1, COL6A2 and COL6A3 genes cause Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy, and Myosclerosis. Moreover, Col6a1(-/-) mice and collagen VI deficient zebrafish display a myopathic phenotype. Recently, two additional collagen VI chains were identified in humans, the α5 and α6 chains, however their distribution patterns and functions in human skeletal muscle have not been thoroughly investigated yet. By means of immunofluorescence analysis, the α6 chain was detected in the endomysium and perimysium, while the α5 chain labeling was restricted to the myotendinous junctions. In normal muscle cultures, the α6 chain was present in traces in the ECM, while the α5 chain was not detected. In the absence of ascorbic acid, the α6 chain was mainly accumulated into the cytoplasm of a sub-set of desmin negative cells, likely of interstitial origin, which can be considered myofibroblasts as they expressed α-smooth muscle actin. TGF-β1 treatment, a pro-fibrotic factor which induces trans-differentiation of fibroblasts into myofibroblasts, increased the α6 chain deposition in the extracellular matrix after addition of ascorbic acid. In order to define the involvement of the α6 chain in muscle fibrosis we studied biopsies of patients affected by Duchenne Muscular Dystrophy (DMD). We found that the α6 chain was dramatically up-regulated in fibrotic areas where, in contrast, the α5 chain was undetectable. Our results show a restricted and differential distribution of the novel α6 and α5 chains in skeletal muscle when compared to the widely distributed, homologous α3 chain, suggesting that these new chains may play specific roles in specialized ECM structures. While the α5 chain may have a specialized function in tissue areas subjected to tensile stress, the α6 chain appears implicated in ECM remodeling during muscle fibrosis.  相似文献   

9.
10.
11.
Lactobacillus (LB) and α-lipoic acid (ALA) were investigated to compare their protective effects against dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Animals were either injected intraperitoneally with DMN to induce hepatic fibrosis, or were left untreated (negative control). For the DMN + LB and DMN + ALA treatment groups, at two weeks of DMN treatment LB or ALA was added to the feed and supplementation continued until the experimental endpoint at sixty days. At the study endpoint, expression of IL-1β, IL-6, IL-10, TNF-α, IFN-γ, TGF-β1, COL1-α1 genes and the concentration of glutathione and malondialdehyde were measured in liver tissues, while GOT, GPT, and ALP concentrations were measured in blood. Body weights remained higher in NC and DMN + LB groups compared to DMN and DMN + ALA groups, while activity of GOT and GPT in serum was lower in DMN + LB and DMN + ALA groups compared to the DMN group. Compared to other treatment groups, in the DMN group expression of both TGF-β1 and, COL1-α1 mRNAs and pro-inflammatory cytokines increased, while that of 1L-10 decreased. Furthermore, LB and ALA treatments increased antioxidant activity of glutathione and decreased malondialdehyde in comparison to the DMN group. Between LB and ALA treatments, glutathione concentration was higher in the DMN + LB group, while malondialdehyde was lower. Our results indicate that both LB and ALA exert hepatoprotective effects against DMN-induced liver fibrosis. Their beneficial effects may be partly associated with down-regulation of both TGF-β1 and COL1-α1 signaling, which may be accounted for reduction of increased oxidative stress and TNF-α production.  相似文献   

12.
To investigate the effects of the transient receptor potential vanilloid type 1 (TRPV1) channel on renal extracellular matrix (ECM) protein expression including collagen deposition and the transforming growth factor β (TGF-β)/Smad signaling pathway during salt-dependent hypertension, wild-type (WT) and TRPV1-null (TRPV1?/?) mutant mice were uninephrectomized and given deoxycorticosterone acetate (DOCA)-salt for 4 wks. TRPV1 gene ablation exaggerated DOCA-salt-induced impairment of renal function as evidenced by increased albumin excretion (μg/24 h) compared with WT mice (83.7 ± 7.1 versus 28.3 ± 4.8, P < 0.05), but had no apparent effect on mean arterial pressure (mmHg) as determined by radiotelemetry (141 ± 4 versus 138 ± 3, P > 0.05). Morphological analysis showed that DOCA-salt-induced glomerulosclerosis, tubular injury and macrophage infiltration (cells/mm2) were increased in TRPV1?/? compared with WT mice (0.74 ± 0.08 versus 0.34 ± 0.04; 3.14 ± 0.26 versus 2.00 ± 0.31; 68 ± 5 versus 40 ± 4, P < 0.05). Immunostaining studies showed that DOCA-salt treatment decreased nephrin but increased collagen type I and IV as well as phosphorylated Smad2/3 staining in kidneys of TRPV1?/? compared with WT mice. Hydroxyproline assay and Western blot showed that DOCA-salt treatment increased collagen content (μg/mg dry tissue) and fibronectin protein expression (%β-actin arbitrary units) in the kidney of TRPV1?/? compared with WT mice (26.7 ± 2.7 versus 17.4 ± 1.8; 0.93 ± 0.07 versus 0.65 ± 0.08, P < 0.05). Acceleration of renal ECM protein deposition in DOCA-salt-treated TRPV1?/? mice was accompanied by increased TGF-β1, as well as phosphorylation of Smad2/3 protein expression (%β-actin arbitrary units) compared with DOCA-salt-treated WT mice (0.61 ± 0.07 versus 0.32 ± 0.05; 0.57 ± 0.07 versus 0.25 ± 0.05; 0.71 ± 0.08 versus 0.40 ± 0.06, P < 0.05). These results show that exaggerated renal functional and structural injuries are accompanied by increased production of ECM protein and activation of the TGF-β/Smad2/3 signaling pathway. These data suggest that activation of TRPV1 attenuates the progression of renal fibrosis possibly via suppression of the TGF-β and its downstream regulatory signaling pathway.  相似文献   

13.
Cell-mediated activation of latent TGF-β1 is intimately involved with tissue repair and fibrosis in all organs. Previously, it was shown that the integrin β1 subunit was required for activation of latent TGF-β1 and skin fibrosis. A recent study by Henderson and colleagues (Nature Medicine 19,1617–1624, 2013) used three different in vivo models of fibrosis to show that integrin αv subunit was required for fibrogenesis. Through a process of elimination, the authors conclude that in vivo, the little-studied αvβ1 could be the major integrin responsible for TGF-β activation by myofibroblasts. Thus targeting this integrin might be a useful therapy for fibrosis.  相似文献   

14.
Fibrosis is a major cause of morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only effective treatment for end-stage fibrotic disease. However, demand for donor organs greatly outstrips supply, and so effective anti-fibrotic treatments are urgently required. In recent years, the integrin family of cell adhesion receptors has gained prominence as key regulators of chronic inflammation and fibrosis. Fibrosis models in multiple organs have demonstrated that integrins have profound effects on the fibrotic process. There is now abundant in vivo data demonstrating critical regulatory roles for integrins expressed on different cell types during tissue fibrogenesis. In this review, we will examine the ways in which integrins regulate these processes and discuss how the manipulation of integrins using function blocking antibodies and small molecule inhibitors may have clinical utility in the treatment of patients with a broad range of fibrotic diseases. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

15.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

16.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

17.
The study was undertaken to investigate the influence of α-tocopherol on zinc, copper, iron, calcium, magnesium, and potassium concentrations in serum of rats with bleomycin-induced pulmonary fibrosis. Fourteen Wistar albino rats were randomly divided into two groups of seven animals each. The first group was treated intratracheally with bleomycin hydrochloride (BM group); the second group was also instilled with BM but received injections of α-tocopherol twice a week (BM+E group). The third group was treated in the same manner with saline solution only, acting as controls (C). The zinc concentrations of the BM and BM+E groups were significantly decreased compared to the controls (p<0.05). The iron concentration of the controls was significantly higher than the other two groups. The magnesium concentration in the controls and the BM+E group was significantly higher than that of the BM group. The serum copper, calcium, and potassium concentrations were not found to be statistically different among the three groups. Distinct histopathologic changes were found in the BM group compared to the untreated rats. Less severe fibrotic lesions were also observed in the BM+E group. The results of this study show that lungs of rats treated with bleomycin were seriously damaged and that vitamin E seemed to counteract some of the damage, as indicated by differences in the serum concentrations of major elements.  相似文献   

18.
Qin Y  Fang Z  Pan F  Zhao Y  Li H  Wu H  Meng X 《Biotechnology letters》2012,34(5):895-899
The calcium-binding residues, Tyr302 and His235, and the sodium-binding residue, Asp194, on the activity of Bacillus licheniformis α-amylase were investigated using site-directed mutagenesis. Tyr302 and His235 were replaced by Asn and Asp, respectively, to produce the mutants Y302N and H235D; Asp194 was replaced by Ala to produce D194A. The mutant amylases were purified to homogeneity; each was ~53?kDa. The specific activity of the D194A was 236?U?mg(-1), lower than the specific activity of the wild-type enzyme by 55%. No significant changes of thermostability, optimum temperature, and optimum pH level were observed in D194A. Mutant amylases with H235D and Y302N significantly improved their specific activity by 43% (754?U?mg(-1)) and 7% (563?U?mg(-1)), respectively, compared with the wild-type enzyme. H235D substitution decreased its optimum pH by approx. 0.5-1 pH unit.  相似文献   

19.
Bone marrow cells have frequently been tested in animal models of liver fibrosis to assess their role in hepatic regeneration. The mononuclear fraction of bone marrow cells is of particular interest, as many studies show that these cells may be beneficial to treat hepatic fibrosis. In this study, we used the bile duct ligation model to induce hepatic fibrosis in an irreversible manner, and rats were treated with bone marrow mononuclear (BMMN) cells after fibrosis was established. Analysis of collagen types I and IV, laminin and α-SMA showed a decreased expression of these proteins in fibrotic livers after 7 days of BMMN cell injection. Moreover, cytokeratin-19 analysis showed a reduction in bile ducts in the BMMN cell-treated group. These results were accompanied by ameliorated levels of hepatic enzymes GPT (Glutamic-pyruvic transaminase), GOT (glutamic-oxaloacetic transaminase) and alkaline phosphatase (AP). Therefore, we showed that BMMN cells decrease hepatic fibrosis by significantly reducing myofibroblast numbers and through reduction of the collagen and laminin-rich extracellular matrix of fibrotic septa and hepatic sinusoids.  相似文献   

20.
Background: Idiopathic Pulmonary Fibrosis (IPF) is a progressive inflammatory disorder driven by a fibrotic cascade of events such as epithelial to mesenchymal transition, extracellular matrix production and collagen formation in the lungs in a sequential manner. IPF incidences were raising rapidly across the world. FDA approved pirfenidone and nintedanib (tyrosine kinase inhibitors) are being used as a first-line treatment drugs for IPF, however, neither the quality of life nor survival rates have been improved because of patient noncompliance due to multiple side effects. Thus, the development of novel therapeutic approaches targeting TGF-β mediated cascade of fibrotic events is urgently needed to improve the survival of the patients suffering from devastating disease.Purpose: The aim of this study was to investigate and validate the anti-fibrotic properties of Biochanin-A (isoflavone) against TGF-β mediated fibrosis in in vitro, ex vivo, in vivo models and to determine the molecular mechanisms that mediate these anti-fibrotic effects.Methods: The therapeutic activity of BCA was determined in in vitro/ex vivo models. Cells were pre-treated with BCA and incubated in presence or absence of recombinant-TGF-β to stimulate the fibrotic cascade of events. Pulmonary fibrosis was developed by intratracheal administration of bleomycin in rats. BCA treatment was given for 14 days from post bleomycin instillation and then various investigations (collagen content, fibrosis gene/protein expression and histopathological changes) were performed to assess the anti-fibrotic activity of BCA.Results: In vitro/ex vivo (Primary normal, IPF cell line and primary IPF cells/ Precision cut mouse lung slices) experiments revealed that, BCA treatment significantly (p < 0.001) reduced the expression of TGF-β modulated fibrotic genes/protein expressions (including their functions) which are involved in the cascade of fibrotic events. BCA treatment significantly (p < 0.01) reduced the bleomycin-induced inflammatory cell-infiltration, inflammatory markers expression, collagen deposition and expression of fibrotic markers in lung tissues equivalent or better than pirfenidone treatment. In addition, BCA treatment significantly (p < 0.001) attenuated the TGF-β1/BLM-mediated increase of TGF-β/Smad2/3 phosphorylation and resulted in the reduction of pathological abnormalities in lung tissues determined by histopathology observations.Conclusion: Collectively, BCA treatment demonstrated the remarkable therapeutic effects on TGF-β/BLM mediated pulmonary fibrosis using IPF cells and rodent models. This current study may offer a novel treatment approach to halt and may be even rescue the devastating lung scarring of IPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号