首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The mantis shrimpSquilla mantis responds to an electrical shock with a quick and violent flexure of its body (Fig. 1 and 2). The reaction time of this defensive response was measured for each experimental shrimp and the minimal current that elicited a reaction time equal to or lesser than 0.22 s was considered as its intensity threshold (Fig. 3). Different doses of morphine-HCl were injected and results showed that this drug produces a dose-related analgesia by increasing the intensity threshold. A concentration of morphine equal to 30.0 g/mm of animal length (about 91.0 g/g) causes a 50% inhibition in the sensitivity to the electrical stimulus, but the effect is fully blocked by naloxone (Table 2).The present study represents the first behavioral analysis of opiate effects in invertebrates. However, the effective dose reported in this experiment is far greater than that used with vertebrates. Some speculative arguments are mentioned in order to account for a such large difference.  相似文献   

2.
The distances of separation at which individuals of the territorial shrimp Gonodactylus oerstedii showed agonistic behaviors were measured in the laboratory. Sizes of interacting animals had no effect on distances at which behavior patterns were shown. Different acts occurred at significantly different distances.

In the case of territorial G. oerstedii, most agonistic acts occurred just as an introduced animal crossed the gravel line marking the boundary of the territory. Actual distance separating animals was less important than location of an introduced shrimp in determining the probability of agonistic interactions.

Overall, there was an inverse correlation between degree of site attachment in a species and the variance in its behavior‐distance values.  相似文献   

3.
1. Transmitters of motoneurons in the stomatogastric ganglion (STG) of Squilla were identified by analyzing the excitatory neuromuscular properties of muscles in the posterior cardiac plate (pcp) and pyloric regions. 2. Bath and iontophoretic applications of glutamate produce depolarizations in these muscles. The pharmacological experiments and desensitization of the junctional receptors elucidate the glutamatergic nature of the excitatory junctional potentials (EJPs) evoked in the constrictor and dilator muscles. The reversal potentials for the excitatory junctional current (EJC) and for the glutamate-induced current are almost the same. 3. Some types of dilator muscle show sensitivity to both glutamate and acetylcholine (ACh) exogenously applied. The pharmacological evidence and desensitization of the junctional receptors indicate the glutamatergic nature of neuromuscular junctions in these dually sensitive muscles. The reversal potentials for the EJC and for the ACh-induced current are not identical. 4. Glutamate is a candidate as an excitatory neuro-transmitter at the neuromuscular junctions which the STG motoneurons named PCP, PY, PD, LA and VC make with the identified muscles. Kainic and quisqualic acids which act on glutamate receptors are potent excitants of these muscles. Extrajunctional receptors to ACh are present in two types of the muscle innervated by LA and VC. 5. Neurotransmitters used by the STG motoneurons of stomatopods are compared to those of decapods.  相似文献   

4.
Stomatopods locate prey, within a short range of distances, with one eye and strike it within a few milliseconds. We developed a model based on the complex input patterns of the eye transferred to a matrix of neural integrators called T2 and T3 fibers. In the integrators graded potentials are summed and generate spikes if the sum reaches threshold. Histograms of instantaneous frequencies were simulated on a PC for the T2 and for the T3 fibers for motion of a luminous point parallel to the T2 fibers and for approach of the point towards the eye. Position, size, speed of motion and distance of the target could be extracted from the frequency-pattern-coded output of the integrators in our model. A critical region in front of the center of the eye could be defined. This region is elliptical in shape and adapted to the size of the animal (respectively to the size of its raptorial appendages). We assume that prey is hit when it is in the critical zone. Histological and electrophysiological results seem to confirm our model.  相似文献   

5.
Summary The electron microscopic structure of the myocardium of the mantis shrimp is descriped. Particular attention is paid to the organization of the nerve terminal and the sarcotubular system. The general appearance of this myocardium is characterized by deep invagination of the plasma membrane at the level of Z-band and large irregular shaped mitochondria. It possesses a very well developed sarcotubular system, consisting of the longitudinal system and two transverse elements making two sets of contact to each other. One forms dyad and the other forms triad at the level of M- and Z-band, respectively. The organization of the myoneural junction in this muscle is very simple and undifferentiated. In general, a special structural differentiation is invariably observed at both sides of the contact area. In spite of the fact that synaptic vesicles and a differentiated membrane are found at the naked process of this cardiac nerve, specialization such as subsynaptic fold formation has not been observed at the muscle side which is in contact with the nerve process. Observations made on the sarcotubular system and the nerve termination have been discussed with reference to their physiological significance. This investigation was supported by the Public Health Service Research Grants HE 06968-04 and NB 03348-04 of the National Institutes of Health, Bethesda, and the U. S. Department of the Army through its Far East Research Office.  相似文献   

6.
Bidimensional and unidimensional maps of amine-containing components extracted from brains of the praying mantis (Stagmatoptera biocellata) were obtained using high-voltage electrophoresis and chromatography, and high-voltage electrophoresis alone.Bidimensional maps from control insects, i.e. animals that did not receive training, showed four distinctive spots and one less intense spot (number 5). On the other hand, bidimensional maps from trained animals, i.e. mantids that were trained not to attack a moving star, showed the same spots 1–4, plus an intense spot (number 5) and an extra componet (number 6).Unidimensional maps from brains of mantids that were trained not to attack a moving star (‘star-group’) showed two extra components in comparison with maps from the control insects. On the other hand, when mantids received training similarto that of the star-group, but using a fly that could not be caught as a stimulus, instead of a mobile star, they did not learn and their maps were similar to those from control mantids.The techniques used in this paper to obtain the maps suggest that they are maps of peptides of low molecular weight. The possible correlation between the appearance of extra spots in the maps and a learning process is discussed.  相似文献   

7.
Mantis shrimp strike with extreme impact forces that are deadly to prey. They also strike conspecifics during territorial contests, yet theoretical and empirical findings in aggressive behaviour research suggest competitors should resolve conflicts using signals before escalating to dangerous combat. We tested how Neogonodactylus bredini uses two ritualized behaviours to resolve size-matched contests: meral spread visual displays and telson (tailplate) strikes. We predicted that (i) most contests would be resolved by meral spreads, (ii) meral spreads would reliably signal strike force and (iii) strike force would predict contest success. The results were unexpected for each prediction. Contests were not resolved by meral spreads, instead escalating to striking in 33 of 34 experiments. The size of meral spread components did not strongly correlate with strike force. Strike force did not predict contest success; instead, winners delivered more strikes. Size-matched N. bredini avoid deadly combat not by visual displays, but by ritualistically and repeatedly striking each other''s telsons until the loser retreats. We term this behaviour ‘telson sparring'', analogous to sparring in other weapon systems. We present an alternative framework for mantis shrimp contests in which the fight itself is the signal, serving as a non-lethal indicator of aggressive persistence or endurance.  相似文献   

8.
The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1–7 (R1–R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1–4 are incorporated into the colour vision system formed by R1–R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.This research was supported by the Swiss National Science Foundation (PBSKB-104268/1), the Australian Research Council (LP0214956) and the American Air Force (AOARD/AFOSR) (F62562-03-P-0227).  相似文献   

9.
Molecular Biology Reports - Mantis shrimp has become commercially valuable in many countries, while the commercially aquaculture still unsuccessful. The stable supply of the species-specific...  相似文献   

10.
Summary Odontodactylus scyllarus makes discrete spontaneous eye-movements at a maximum rate of 3/s. These movements are unpredictable in direction and timing, and there is no detectable co-ordination between the two eyes. The eye-movements were measured with a computer-aided video method, and from 208 of these the following picture of a typical movement emerges. It has roughly equal horizontal and vertical components of 7–8°, taking the eye-stalk axis about 12° around a great circle, and also a rotational component of about 8°. The 3 components can occur independently of each other and are thus separately driven by the brain (Fig. 6). The average duration is 300 ms, and average velocity is 40° s (Fig. 5). Most movements are made in a direction approximately at right angles to the orientation of the specialised central band. It is shown that the slow speed of the eye-movements is compatible with scanning, that is, the uptake of visual information during the movement rather than its exclusion as in conventional saccades.Mantis shrimps also make target-acquiring and tracking eye-movements which tend to be somewhat larger and faster than other spontaneous movements. Rotating a striped drum around the animal induces a typical optokinetic nystagmus whose slow phases are smooth, unlike target tracking which is jerky (Fig. 7). Eye-movements may therefore be conveniently grouped into 3 classes: targetting/tracking, scanning, and optokinetic.  相似文献   

11.
12.
Many animals are considered to be specialists because they have feeding structures that are fine-tuned for consuming specific prey. For example, “smasher” mantis shrimp have highly specialized predatory appendages that generate forceful strikes to break apart hard-shelled prey. Anecdotal observations suggest, however, that the diet of smashers may include soft-bodied prey as well. Our goal was to examine the diet breadth of the smasher mantis shrimp, Neogonodactylus bredini, to determine whether it has a narrow diet of hard-shelled prey. We combined studies of prey abundance, feeding behavior, and stable isotope analyses of diet in both seagrass and coral rubble to determine if N. bredini’s diet was consistent across different habitat types. The abundances of hard-shelled and soft-bodied prey varied between habitats. In feeding experiments, N. bredini consumed both prey types. N. bredini consumed a range of different prey in the field as well and, unexpectedly, the stable isotope analysis demonstrated that soft-bodied prey comprised a large proportion (29–53 %) of the diet in both habitats. Using a Bayesian mixing model framework (MixSIAR), we found that this result held even when we used uninformative, or generalist, priors and informative priors reflecting a specialist diet on hard-shelled prey and prey abundances in the field. Thus, contrary to expectation, the specialized feeding morphology of N. bredini corresponds to a broad diet of both hard-shelled and soft-bodied prey. Using multiple lines of study to describe the natural diets of other presumed specialists may demonstrate that specialized morphology often broadens rather than narrows diet breadth.  相似文献   

13.
The pyloric constrictor muscles of the stomach in Squilla can generate spikes by synaptic activation via the motor nerve from the stomatogastric ganglion. Spikes are followed by slow depolarizing afterpotentials (DAPs) which lead to sustained depolarization during a burst of spikes. 1. The frequency of rhythmic bursts induced by continuous depolarization is membrane voltage-dependent. A brief depolarizing or hyperpolarizing pulse can trigger or terminate bursts, respectively, in a threshold-dependent manner. 2. The conductance increases during the DAP response. The amplitude of DAP decreases by imposed depolarization, whereas it increases by hyperpolarization. DAPs from successive spikes sum to produce a sustained depolarizing potential capable of firing a burst. 3. The spike and DAP are reduced in amplitude by decreasing [Ca]o, enhanced by Sr2+ or Ba2+ substituted for Ca2+, and blocked by Co2+ or Mn2+. DAPs are selectively blocked by Ni2+, and the spike is followed by a hyperpolarizing afterpotential. 4. The spike and DAP are prolonged by intracellular injection of the Ca2+ chelator EGTA. A hyperpolarizing afterpotential is abolished by EGTA and enhanced by increasing [Ca]o. The DAP is diminished in Na(+)-free saline and reduced by tetrodotoxin. 5. It is concluded that the muscle fiber is endowed with endogenous oscillatory properties and that the oscillatory membrane events result from changes of a voltage- and time-dependent conductance to Ca2+ and Na+ and a Ca2+ activated conductance to K+.  相似文献   

14.
Comparative biomechanics offers an opportunity to explore the evolution of disparate biological systems that share common underlying mechanics. Four‐bar linkage modeling has been applied to various biological systems such as fish jaws and crustacean appendages to explore the relationship between biomechanics and evolutionary diversification. Mechanical sensitivity states that the functional output of a mechanical system will show differential sensitivity to changes in specific morphological components. We document similar patterns of mechanical sensitivity in two disparate four‐bar systems from different phyla: the opercular four‐bar system in centrarchid fishes and the raptorial appendage of stomatopods. We built dynamic linkage models of 19 centrarchid and 36 stomatopod species and used phylogenetic generalized least squares regression (PGLS) to compare evolutionary shifts in linkage morphology and mechanical outputs derived from the models. In both systems, the kinematics of the four‐bar mechanism show significant evolutionary correlation with the output link, while travel distance of the output arm is correlated with the coupler link. This common evolutionary pattern seen in both fish and crustacean taxa is a potential consequence of the mechanical principles underlying four‐bar systems. Our results illustrate the potential influence of physical principles on morphological evolution across biological systems with different structures, behaviors, and ecologies.  相似文献   

15.
Hemocyanin is the blue respiratory protein of many arthropod species. While its structure, evolution, and physiological function have been studied in detail in Decapoda, there is little information on hemocyanins from other crustacean taxa. Here, we have investigated the hemocyanin of the peacock mantis shrimp Odontodactylus scyllarus, which belongs to the Stomatopoda (Hoplocarida). O. scyllarus hemocyanin forms a dodecamer (2 × 6-mer), which is composed of at least four distinct subunit types. We obtained the full-length cDNA sequences of three hemocyanin subunits, while a fourth cDNA was incomplete at its 5′ end. The complete full-length cDNAs of O. scyllarus hemocyanin translate into polypeptides of 650–662 amino acids, which include signal peptides of 16 or 17 amino acids. The predicted molecular masses of 73.1–75.1 kDa correspond well with the main hemolymph proteins detected by SDS-PAGE and Western blotting using various anti-hemocyanin antibodies. Phylogenetic analyses show that O. scyllarus hemocyanins belong to the β-type of malacostracan hemocyanin subunits, which diverged from the other subunits before the radiation of the malacostracan subclasses around 520 million years ago. Molecular clock analysis revealed an ancient and complex pattern of hemocyanin subunit evolution in Malacostraca and also allowed dating divergence times of malacostracan taxa.  相似文献   

16.
Stomatopoda is a crustacean order including sophisticated predators called spearing and smashing mantis shrimps that are separated from the well-studied Eumalacotraca since the Devonian. The spearing mantis shrimp has developed a spiky dactyl capable of impaling fishes or crustaceans in a fraction of second. In this high velocity hunting technique, the spikes undergo an intense mechanical constraint to which their exoskeleton (or cuticle) has to be adapted. To better understand the spike cuticle internal architecture and composition, electron microscopy, X-ray microanalysis and Raman spectroscopy were used on the spikes of 7 individuals (collected in French Polynesia and Indonesia), but also on parts of the body cuticle that have less mechanical stress to bear. In the body cuticle, several specificities linked to the group were found, allowing to determine the basic structure from which the spike cuticle has evolved. Results also highlighted that the body cuticle of mantis shrimps could be a model close to the ancestral arthropod cuticle by the aspect of its biological layers (epi- and procuticle including exo- and endocuticle) as well as by the Ca-carbonate/phosphate mineral content of these layers. In contrast, the spike cuticle exhibits a deeply modified organization in four functional regions overprinted on the biological layers. Each of them has specific fibre arrangement or mineral content (fluorapatite, ACP or phosphate-rich Ca-carbonate) and is thought to assume specific mechanical roles, conferring appropriate properties on the entire spike. These results agree with an evolution of smashing mantis shrimps from primitive stabbing/spearing shrimps, and thus also allowed a better understanding of the structural modifications described in previous studies on the dactyl club of smashing mantis shrimps.  相似文献   

17.
18.
Activity patterns of the constituent neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of the mantis shrimp Squilla oratoria were studied by recording spontaneous burst discharges intracellularly from neuronal somata. These neurons were identified electrophysiologically, and synaptic connections among them were qualitatively analysed. The posterior cardiac plate constrictor, pyloric constrictor, pyloric dilator and ventricular dilator motoneurons, and the pyloric interneuron were involved in the posterior cardiac plate-pyloric system. All the cell types could produce slow burst-forming potentials which led to repetitive spike discharges. These neurons generated sequentially patterned outputs. Most commonly, the posterior cardiac plate neuron activity was followed by the activity of pyloric constrictor neurons, and then by the activity of pyloric dilator/pyloric interneuron, and ventricular dilator neurons. The motoneurons and interneuron in the posterior cardiac plate-pyloric system were connected to each other either by electrical or by inhibitory chemical synapses, and thus constructed the neural circuit characterized by a wiring diagram which was structurally similar to the pyloric circuit of decapods. The circuitry in the stomatogastric ganglion was strongly conserved during evolution between stomatopods and decapods, despite significant changes in the peripheral structure of the foregut. There were more electrical synapses in stomatopods, and more reciprocal inhibitory synapses in decapods.Abbreviations EJP excitatory junctional potential - IPSP inhibitory postsynaptic potential - CoG commissural ganglion - CPG central pattern generator - ion inferior oesophageal nerve - OG oesophageal ganglion - pcp posterior cardiac plate - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve - PY pyloric constrictor - PD pyloric dilator - VD ventricular dilator - AB pyloric interneuron - lvn lateral ventricular nerves - tcpm transverse cardiac plate muscle  相似文献   

19.
The period of Cenozoic Himalayan orogeny was the developmental stage of the marginal seas and islands adjacent to the western Pacific. In the study, the molecular divergence dating between the northern and southern groups by fossil calibration was approximately 10.9 Myr, which was earlier than the time of the formation of Taiwan Island. Statistical-Dispersal Vicariance Analysis (S-DIVA) suggested that mantis shrimp of the China seas originated from two different ancestral regions (i.e., the Yellow Sea and South China Sea). However, the fluctuation of the Taiwan Strait in the late glacial period further influenced the phylogeographic structure of the mantis shrimp. In addition, the opposite ocean currents of the northern and southern seas of China, driving the planktonic larvae of marine species in opposite directions in the reproductive season, further accelerated their genetic divergence. In contrast, there were weak differences among the three northern seas due to their sharing one common ancestral region and then facing the dispersal event in the Cenozoic era and later sudden population expansion in the late Quaternary interglacial (54–75 ka). In conclusion, geological and climatic changes in past geological periods have greatly influenced the geographical distribution, dispersal and genetic divergence of the mantis shrimp.  相似文献   

20.
Within single species of stomatopod crustaceans, visual pigment classes of homologous photoreceptors throughout the retina are identical in all individuals and do not vary with the spectral characteristics of local habitats. We examined whether spectral sensitivities of stomatopod photoreceptors are differentially tuned through variations in the filter pigments associated with particular receptor classes. All classes of intrarhabdomal filters were characterized using microspectrophotometry in retinas of three stomatopod species, Haptosquilla trispinosa, Gonodactylellus affinis, and Gonodactylopsis spongicola, comparing individuals of each species collected from shallow or deep water. Depending on the depth of collection, filters varied among individuals both in optical density and in spectral shape, and the variation that was observed was similar in all three species. The changes in filter density and spectrum increased absolute sensitivity in retinas of animals living at greater depths, and tuned their long-wavelength photoreceptors for improved function in the bluer light available in deep water. Plasticity in retinal spectral function may be common in mantis shrimp species that occupy a range of habitat depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号