首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 μmol kg−1), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 μmol kg−1), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 μmol kg−1), and traces of NDAB (3.8 μmol kg−1). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 ± 22 μmol kg−1) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.  相似文献   

2.
Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils.  相似文献   

3.
The Wangyang River (WYR) basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs) in the agricultural soils in this area. Thirty-nine soil samples (0–20 cm) were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g−1 dw to 0.457 μg g−1 dw with an average value of 0.294 μg g−1 dw. Di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP) concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.  相似文献   

4.
Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N2O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg−1. Without added C, peak NO emissions of 4 μg of N kg−1 h−1 were increased to 15 μg of N kg−1 h−1 by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 μg of N kg−1 h−1 in the presence of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine], an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 μg of N kg−1 h−1 after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N2O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N2O produced during nitrification in soil.  相似文献   

5.
Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4+-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4+-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4+-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.  相似文献   

6.
Respiration and growth of Pseudomonas putida PpG7, containing catabolic plasmid NAH7, was determined in three agricultural field soils amended with the carbon source salicylate. The addition of salicylate to soil significantly increased the population of PpG7. However, there was a lack of relationship between microbial numbers and activity as determined by evolution of CO2. In soils containing 30 to 1,500 μg of salicylate per g, metabolic activities of PpG7 peaked between 18 and 42 h and population densities increased approximately 101-to 105-fold. However, the metabolic activity of PpG7 rapidly declined after salicylate was utilized, whereas peak population densities were maintained for the duration of the experiments (5 to 7 days). Thus, elevated population densities of PpG7 were represented by inactive cells. Soil type had only minor effects on respiration rates or growth curves of PpG7 when amended with comparable concentrations of salicylate. Respiration and growth rates were optimal at concentrations between 300 and 1,000 μg of salicylate per g in the test soils. At 1,500 to 2,500 μg/g, respiration and growth of PpG7 were initially suppressed, but after a short lag time both attained levels similar to or greater than those resulting from the use of lower concentrations of salicylate. The culturing of PpG7 on a salicylate-amended medium to induce salicylate-degradative enzymes did not affect the lag time before utilization of salicylate in soil. Although PpG7 competed well with fungi for the substrate, suppression of fungal populations with cycloheximide resulted in significantly increased population densities of PpG7 in two of three soils amended with salicylate. The beneficial activities of bacteria in soil are discussed in relation to population density, population metabolic activity, and selective carbon source utilization.  相似文献   

7.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

8.
Plasmid NAH7 was transferred from Pseudomonas putida PpG7 to P. putida R20 [R20(NAH7)], an antagonist of Pythium ultimum. The plasmid did not affect growth or survival of R20(NAH7) and was stably maintained under nonselective conditions in broth and soil and on sugar beet seeds. Plasmid NAH7 conferred to R20(NAH7) the ability to utilize salicylate in culture, agricultural field soil, and on sugar beet seeds. The metabolic activity of R20(NAH7), but not the wild-type R20, was greatly increased in soil by amendment with salicylate (250 μg/g) as measured by induced respiration. Population densities of R20(NAH7) were also enhanced in salicylate-amended soil, increasing from approximately 1 × 105 CFU/g to approximately 3 × 108 CFU/g after 35 h of incubation. In contrast, population densities of R20(NAH7) in nonamended soil were approximately 3 × 106 CFU/g of soil after 35 h of incubation. The concentration of salicylate in soil affected the rate and extent of population increase by R20(NAH7). At 50 to 250 μg of salicylate per g of soil, population densities of R20(NAH7) increased to approximately 108 CFU/g of soil by 48 h of incubation, with the fastest increase at 100 μg/g. A lag phase of approximately 24 h occurred before the population density increased in the presence of salicylate at 500 μg/g; at 1,000 μg/g, population densities of R20(NAH7) declined over the time period of the experiment. Population densities of R20(NAH7) on sugar beet seeds in soils amended with 100 μg of salicylate per g were not increased while ample carbon was present in the spermosphere. However, after carbon from the seed had been utilized, population densities of R20(NAH7) decreased significantly less (P = 0.005) on sugar beet seeds in soil amended with salicylate than in nonamended soil.  相似文献   

9.
A bioreporter was made containing a tfdRPDII-luxCDABE fusion in a modified mini-Tn5 construct. When it was introduced into the chromosome of Ralstonia eutropha JMP134, the resulting strain, JMP134-32, produced a sensitive bioluminescent response to 2,4-dichlorophenoxyacetic acid (2,4-D) at concentrations of 2.0 μM to 5.0 mM. This response was linear (R2 = 0.9825) in the range of 2.0 μM to 1.1 × 102 μM. Saturation occurred at higher concentrations, with maximal bioluminescence occurring in the presence of approximately 1.2 mM 2,4-D. A sensitive response was also recorded in the presence of 2,4-dichlorophenol at concentrations below 1.1 × 102 μM; however, only a limited bioluminescent response was recorded in the presence of 3-chlorobenzoic acid at concentrations below 1.0 mM. A significant bioluminescent response was also recorded when strain JMP134-32 was incubated with soils containing aged 2,4-D residues.  相似文献   

10.
To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration.  相似文献   

11.
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP4, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 μg of trehalose per μg of chlorophyll in P. autumnale, 6.9 μg of sucrose per μg of chlorophyll in LPP4, and 4.1 μg of sucrose and 3.2 μg of trehalose per μg of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum and Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.  相似文献   

12.
The effect of condensed tannins from birdsfoot trefoil (Lotus corniculatus L.) on the cellulolytic rumen bacterium Fibrobacter succinogenes S85 was examined. Condensed tannins inhibited endoglucanase activity in the extracellular culture fluid, at concentrations as low as 25 μg ml-1. In contrast, cell-associated endoglucanase activity increased in concentrations of condensed tannins between 100 and 300 μg ml-1. Inhibition of endoglucanase activity in both the extracellular and the cell-associated fractions was virtually complete at 400 μg of condensed tannins ml-1. Despite the sharp decline in extracellular endoglucanase activity with increasing concentrations of condensed tannins, filter paper digestion declined only moderately between 0 and 200 μg of condensed tannins ml-1. However, at 300 μg ml-1, filter paper digestion was dramatically reduced and at 400 μg ml-1, almost no filter paper was digested. F. succinogenes S85 was seen to form digestive grooves on the surface of cellulose, and at 200 μg ml-1, digestive pits were formed which penetrated into the interior of cellulose fibers. Cells grown with condensed tannins (100 to 300 μg ml-1) possessed large amounts of surface material, and although this material may have been capsular carbohydrate, its osmiophilic nature suggested that it had arisen from the formation of tannin-protein complexes on the cell surface. The presence of electron-dense extracellular material suggested that similar complexes were formed with extracellular protein.  相似文献   

13.
The nutritional versatility of a vibrio-shaped, oxalate-utilizing isolate, strain NOX, obtained from tap water supplied with low concentrations of formate, glyoxylate, and oxalate, was determined by growth experiments with low-molecular-weight carbon compounds at high (grams per liter) and very low (micrograms per liter) concentrations. The organism, which was identified as a Spirillum species, appeared to be specialized in the utilization of a number of carboxylic acids. Yields of 2.9 × 106 CFU/μg of oxalate C and 1.2 × 107 CFU/μg of acetate C were obtained from growth experiments in tap water supplied with various low amounts of either oxalate or acetate. A substrate saturation constant of 0.64 μM oxalate was calculated for strain NOX from the relationship between growth rate and concentration of added oxalate. Maximum colony counts of strain NOX grown in ozonated water (dosages of 2.0 to 3.2 mg of O3 per liter) were 15 to 20 times larger than the maximum colony counts of strain NOX grown in water before ozonation. Based on the nutritional requirements of strain NOX, it was concluded that carboxylic acids were produced by ozonation. Oxalate concentrations were calculated from the maximum colony counts of strain NOX grown in samples of ozonated water in which a non-oxalate-utilizing strain of Pseudomonas fluorescens had already reached maximum growth. The oxalate concentrations obtained by this procedure ranged from 130 to 220 μg of C/liter.  相似文献   

14.
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 × 106 cells ml−1 were 0.07, 1.17, and 3.56 μg ml−1 h−1 for initial concentrations of 5, 50, and 500 μg MTBE ml−1, respectively. When incubated with 20 μg of uniformly labeled [14C]MTBE ml−1, strain PM1 converted 46% to 14CO2 and 19% to 14C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE−1. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 μg of MTBE ml−1 added to the core material. The rate of MTBE removal increased with additional inputs of 20 μg of MTBE ml−1. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   

15.
A selective medium was developed that is capable of isolating Phanerochaete chrysosporium from soil. This medium contains 15 ppm of benomyl (15 μg g−1) and 550 ppm of streptomycin sulfate in 2% malt agar and is held at 39°C after inoculation. P. chrysosporium was isolated from three nonsterile forest soils to which the fungus had been added. These soils contained large microbial populations.  相似文献   

16.
Ten strains of fungi were tested for tolerance to the fungicide benomyl. Verticillium chlamydosporium strain 2 did not grow in the presence of benomyl; Drechraeria coniospora strains 1 and 2 and Chaetomium sp. tolerated only 0.1 μg benomyl/ml medium; Acremonium bacillisporum, an unidentified fungus, and Phoma chrysanthemicola uniformly grew at 1 μg/ml, but some hyphae grew at higher benomyl concentrations; Fusarium sp. tolerated 475 μg/ml, but some hyphae grew on medium amended with 1,000 μg/ml; Verticillium lecanii and V. chlamydosporium strain 1 routinely tolerated 1,000 μg/ml. Fungi generally grew more slowly at higher than at lower benomyl concentrations. Strains with elevated tolerance to benomyl were selected from Acremonium bacillisporum, Drechmeria coniospora, Fusarium sp., and an unidentified fungus. These strains retained the increased tolerance after repeated transfers on unamended medium.  相似文献   

17.
The enzyme geranylgeranyl reductase (CHL P) catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate. We identified a tobacco (Nicotiana tabacum) cDNA sequence encoding a 52-kD precursor protein homologous to the Arabidopsis and bacterial CHL P. The effects of deficient CHL P activity on chlorophyll (Chl) and tocopherol contents were studied in transgenic plants expressing antisense CHL P RNA. Transformants with gradually reduced Chl P expression showed a delayed growth rate and a pale or variegated phenotype. Transformants grown in high (500 μmol m−2 s−1; HL) and low (70 μmol photon m−2 s−1; LL) light displayed a similar degree of reduced tocopherol content during leaf development, although growth of wild-type plants in HL conditions led to up to a 2-fold increase in tocopherol content. The total Chl content was more rapidly reduced during HL than LL conditions. Up to 58% of the Chl content was esterified with geranylgeraniol instead of phytol under LL conditions. Our results indicate that CHL P provides phytol for both tocopherol and Chl synthesis. The transformants are a valuable model with which to investigate the adaptation of plants with modified tocopherol levels against deleterious environmental conditions.  相似文献   

18.
The distributions of endosulfan (ED) residues (α-, β-isomers, and sulfate-metabolite) in cucumbers grown in soils treated with ED at concentrations of 20 and 40 mg kg-1 were assessed using indoor and outdoor experiments. In all treatments, degradation rates of the α-isomer in soils were higher than that of the β-isomer. In the indoor tests, uptake amounts of total ED by cucumbers, after 15 d of growth, were 7.8 and 14.5 mg kg-1 in 20 and 40 mg kg-1-treated pots, respectively. For growth time from 15 to 30 d, uptake amounts in 20 and 40 mg kg-1-treated pots were 3.8 and 7.9 mg kg-1, respectively. Outdoor tests resulted in smaller ED residues in cucumbers than those in indoor tests. In both indoor and outdoor tests, ED residues absorbed were highest in roots, and the α-isomer was the more frequently absorbed isomer. These results will be useful for determining management criteria for soil persistent pesticides.  相似文献   

19.
The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250–2000 μm), microaggregates (MI, 53–250 μm), and mineral fractions (MF, <53 μm) collected from an Inner Mongolian temperate grassland. The results showed that temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (P<0.0001). For 2 weeks, the decomposition rates of bulk soil and soil aggregates increased with increasing incubation temperature in the following order: MA>MF>bulk soil >MI(P <0.05). The Q10 values were highest for MA, followed (in decreasing order) by bulk soil, MF, and MI. Similarly, the activation energies (Ea) for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol−1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05) suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001), with the largest values occurring in MA (1101 μg g−1), followed by MF (976 μg g−1) and MI (879 μg g−1). These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.  相似文献   

20.
The inhibitory activities of known microcins were evaluated against some diarrheagenic Escherichia coli strains. Some antibacterial properties of microcin J25, the most active one, were studied. A rapid two-step purification was performed. The MIC and the minimum bactericidal concentration of J25 against E. coli O157:H7 were 1 and 100 μg ml−1, respectively. A 104-CFU ml−1 contamination by this strain was destroyed in milk and meat extract by 6.25 μg of J25 ml−1 and in half-diluted egg yolk by 50 μg of J25 ml−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号