首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biologicals》2014,42(1):34-41
Massively parallel sequencing (MPS)-based virus detection has potential regulatory applications. We studied the ability of one of these approaches, based on degenerate oligonucleotide primer (DOP)-polymerase chain reaction (PCR), to detect viral sequences in cell lines known to express viral genes or particles. DOP-PCR was highly sensitive for the detection of small quantities of isolated viral sequences. Detected viral sequences included nodavirus, bracovirus, and endogenous retroviruses in High Five cells, porcine circovirus type 1 and porcine endogenous retrovirus in PK15 cells, human T-cell leukemia virus 1 in MJ cells, human papillomavirus 18 in HeLa cells, human herpesvirus 8 in BCBL-1 cells, and Epstein–Barr Virus in Raji cells. Illumina sequencing (for which primers were most efficiently added using PCR) provided greater sensitivity for virus detection than Roche 454 sequencing. Analyzing nucleic acids extracted both directly from samples and from capsid-enriched preparations provided useful information. Although there are limitations of these methods, these results indicate significant promise for the combination of nonspecific PCR and MPS in identifying contaminants in clinical and biological samples, including cell lines and reagents used to produce vaccines and therapeutic products.  相似文献   

2.
Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356,958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5 M (USD).  相似文献   

3.
Next-generation sequencing (NGS) technologies have transformed genomic research and have the potential to revolutionize clinical medicine. However, the background error rates of sequencing instruments and limitations in targeted read coverage have precluded the detection of rare DNA sequence variants by NGS. Here we describe a method, termed CypherSeq, which combines double-stranded barcoding error correction and rolling circle amplification (RCA)-based target enrichment to vastly improve NGS-based rare variant detection. The CypherSeq methodology involves the ligation of sample DNA into circular vectors, which contain double-stranded barcodes for computational error correction and adapters for library preparation and sequencing. CypherSeq is capable of detecting rare mutations genome-wide as well as those within specific target genes via RCA-based enrichment. We demonstrate that CypherSeq is capable of correcting errors incurred during library preparation and sequencing to reproducibly detect mutations down to a frequency of 2.4 × 10−7 per base pair, and report the frequency and spectra of spontaneous and ethyl methanesulfonate-induced mutations across the Saccharomycescerevisiae genome.  相似文献   

4.
Although per-base sequencing costs have decreased during recent years, library preparation for targeted massively parallel sequencing remains constrained by high reagent cost, limited design flexibility, and protocol complexity. To address these limitations, we previously developed Hi-Plex, a polymerase chain reaction (PCR) massively parallel sequencing strategy for screening panels of genomic target regions. Here, we demonstrate that Hi-Plex applied with hybrid adapters can generate a library suitable for sequencing with both the Ion Torrent and the TruSeq chemistries and that adjusting primer concentrations improves coverage uniformity. These results expand Hi-Plex capabilities as an accurate, affordable, flexible, and rapid approach for various genetic screening applications.  相似文献   

5.
Dan S  Chen F  Choy KW  Jiang F  Lin J  Xuan Z  Wang W  Chen S  Li X  Jiang H  Leung TY  Lau TK  Su Y  Zhang W  Zhang X 《PloS one》2012,7(2):e27835
Fetal chromosomal abnormalities are the most common reasons for invasive prenatal testing. Currently, G-band karyotyping and several molecular genetic methods have been established for diagnosis of chromosomal abnormalities. Although these testing methods are highly reliable, the major limitation remains restricted resolutions or can only achieve limited coverage on the human genome at one time. The massively parallel sequencing (MPS) technologies which can reach single base pair resolution allows detection of genome-wide intragenic deletions and duplication challenging karyotyping and microarrays as the tool for prenatal diagnosis. Here we reported a novel and robust MPS-based method to detect aneuploidy and imbalanced chromosomal arrangements in amniotic fluid (AF) samples. We sequenced 62 AF samples on Illumina GAIIx platform and with averagely 0.01× whole genome sequencing data we detected 13 samples with numerical chromosomal abnormalities by z-test. With up to 2× whole genome sequencing data we were able to detect microdeletion/microduplication (ranged from 1.4 Mb to 37.3 Mb of 5 samples from chorionic villus sampling (CVS) using SeqSeq algorithm. Our work demonstrated MPS is a robust and accurate approach to detect aneuploidy and imbalanced chromosomal arrangements in prenatal samples.  相似文献   

6.
Since the development of technologies that can determine the base-pair sequence of DNA, the ability to sequence genes has contributed much to science and medicine. However, it has remained a relatively costly and laborious process, hindering its use as a routine biomedical tool. Recent times are seeing rapid developments in this field, both in the availability of novel sequencing platforms, as well as supporting technologies involved in processes such as targeting and data analysis. This is leading to significant reductions in the cost of sequencing a human genome and the potential for its use as a routine biomedical tool. This review is a snapshot of this rapidly moving field examining the current state of the art, forthcoming developments and some of the issues still to be resolved prior to the use of new sequencing technologies in routine clinical diagnosis.  相似文献   

7.
The sensitivity of conventional DNA sequencing in tumor biopsies is limited by stromal contamination and by genetic heterogeneity within the cancer. Here, we show that microreactor-based pyrosequencing can detect rare cancer-associated sequence variations by independent and parallel sampling of multiple representatives of a given DNA fragment. This technology can thereby facilitate accurate molecular diagnosis of heterogeneous cancer specimens and enable patient selection for targeted cancer therapies.  相似文献   

8.
? Premise of the study: Genome survey sequences (GSS) from massively parallel sequencing have potential to provide large, cost-effective data sets for phylogenetic inference, replace single gene or spacer regions as DNA barcodes, and provide a plethora of data for other comparative molecular evolution studies. Here we report on the application of this method to estimating the molecular phylogeny of core Asparagales, investigating plastid gene losses, assembling complete plastid genomes, and determining the type and quality of assembled genomic data attainable from Illumina 80-120-bp reads. ? Methods: We sequenced total genomic DNA from samples in two lineages of monocotyledonous plants, Poaceae and Asparagales, on the Illumina platform in a multiplex arrangement. We compared reference-based assemblies to de novo contigs, evaluated consistency of assemblies resulting from use of various references sequences, and assessed our methods to obtain sequence assemblies in nonmodel taxa. ? Key results: Our method returned reliable, robust organellar and nrDNA sequences in a variety of plant lineages. High quality assemblies are not dependent on genome size, amount of plastid present in the total genomic DNA template, or relatedness of available reference sequences for assembly. Phylogenetic results revealed familial and subfamilial relationships within Asparagales with high bootstrap support, although placement of the monotypic genus Aphyllanthes was placed with moderate confidence. ? Conclusions: The well-supported molecular phylogeny provides evidence for delineation of subfamilies within core Asparagales. With advances in technology and bioinformatics tools, the use of massively parallel sequencing will continue to become easier and more affordable for phylogenomic and molecular evolutionary biology investigations.  相似文献   

9.
10.
Massively parallel sequencing of cell-free, maternal plasma DNA was recently demonstrated to be a safe and effective screening method for fetal chromosomal aneuploidies. Here, we report an improved sequencing method achieving significantly increased throughput and decreased cost by replacing laborious sequencing library preparation steps with PCR employing a single primer pair designed to amplify a discrete subset of repeated regions. Using this approach, samples containing as little as 4% trisomy 21 DNA could be readily distinguished from euploid samples.  相似文献   

11.

Background

Usually, next generation sequencing (NGS) technology has the property of ultra-high throughput but the read length is remarkably short compared to conventional Sanger sequencing. Paired-end NGS could computationally extend the read length but with a lot of practical inconvenience because of the inherent gaps. Now that Illumina paired-end sequencing has the ability of read both ends from 600 bp or even 800 bp DNA fragments, how to fill in the gaps between paired ends to produce accurate long reads is intriguing but challenging.

Results

We have developed a new technology, referred to as pseudo-Sanger (PS) sequencing. It tries to fill in the gaps between paired ends and could generate near error-free sequences equivalent to the conventional Sanger reads in length but with the high throughput of the Next Generation Sequencing. The major novelty of PS method lies on that the gap filling is based on local assembly of paired-end reads which have overlaps with at either end. Thus, we are able to fill in the gaps in repetitive genomic region correctly. The PS sequencing starts with short reads from NGS platforms, using a series of paired-end libraries of stepwise decreasing insert sizes. A computational method is introduced to transform these special paired-end reads into long and near error-free PS sequences, which correspond in length to those with the largest insert sizes. The PS construction has 3 advantages over untransformed reads: gap filling, error correction and heterozygote tolerance. Among the many applications of the PS construction is de novo genome assembly, which we tested in this study. Assembly of PS reads from a non-isogenic strain of Drosophila melanogaster yields an N50 contig of 190 kb, a 5 fold improvement over the existing de novo assembly methods and a 3 fold advantage over the assembly of long reads from 454 sequencing.

Conclusions

Our method generated near error-free long reads from NGS paired-end sequencing. We demonstrated that de novo assembly could benefit a lot from these Sanger-like reads. Besides, the characteristic of the long reads could be applied to such applications as structural variations detection and metagenomics.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-711) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.

Background

Mycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions.

Results

We investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi.

Conclusion

Our results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids.  相似文献   

15.

Background  

Massively parallel sequencing readouts of epigenomic assays are enabling integrative genome-wide analyses of genomic and epigenomic variation. Pash 3.0 performs sequence comparison and read mapping and can be employed as a module within diverse configurable analysis pipelines, including ChIP-Seq and methylome mapping by whole-genome bisulfite sequencing.  相似文献   

16.

Background  

Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels?  相似文献   

17.
18.
Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols.  相似文献   

19.
Recent advances in sequencing technologies provide the means for identifying copy number variation (CNV) at an unprecedented resolution. A single next-generation sequencing experiment offers several features that can be used to detect CNV, yet current methods do not incorporate all available signatures into a unified model. cnvHiTSeq is an integrative probabilistic method for CNV discovery and genotyping that jointly analyzes multiple features at the population level. By combining evidence from complementary sources, cnvHiTSeq achieves high genotyping accuracy and a substantial improvement in CNV detection sensitivity over existing methods, while maintaining a low false discovery rate. cnvHiTSeq is available at http://sourceforge.net/projects/cnvhitseq  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号