首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4).  相似文献   

2.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

3.
Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins—which modulate proteasome activity, stability, localization, or substrate uptake—rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.The proteasome is the proteolytic machinery of the ubiquitin-proteasome system (UPS)1, the main pathway responsible for degradation of intracellular proteins. As the major cellular protease, the proteasome is a key player in eukaryotic protein homeostasis and dysregulation of the UPS has been involved in neurodegenerative diseases and cancers. Because of this, proteasomes have been identified as therapeutic targets, especially for some cancers (1). Therefore, understanding the structure and function relationship controlling proteasome activity is of major interest in biology.Mammalian proteasomes are composed of a central α7β7β7α7 barrel-shaped catalytic core particle (CP), the 20S proteasome, the structure of which has been determined (2). In cells, the 20S proteasome has been found as an isolated complex, and associated with one or two regulatory particles (RPs) of identical or different protein composition (3). Four RPs have been identified: 19S, PA28αβ, PA28γ, and PA200. The 26S proteasome is a particular complex in which the CP is capped by two 19S RPs, forming a 2.5 MDa complex. Because of a high level of heterogeneity and to the dynamics of the complex, the structure of the mammalian 26S proteasome has yet to be fully determined, but major progress has been made, resulting in a suggested spatial arrangement for the yeast 26S proteasome (4, 5). In the 19S complex, some specific subunits have specialized functions: poly-ubiquitinated (polyUb) substrate recognition, ATP-unfolding, and ubiquitin recycling. These allow ubiquitin-dependent protein degradation. In addition to the RPs, other proteasome interacting proteins (PIPs) bind proteasome complexes and affect their efficiency. These include Ecm29, which plays a role in yeast 26S proteasome assembly and stability (68).The CP degrades proteins through three main proteolytic activities, defined as trypsin-like (T-like), chymotrypsin-like (ChT-like), and peptidyl-glutamyl peptide hydrolyzing (PGPH). These activities are exerted by the three beta catalytic subunits, β2, β5, and β1, respectively. An alternative form of the 20S proteasome has been characterized, the immuno-proteasome, where the three standard catalytic subunits are replaced by the so called immuno-subunit counterparts (β2i, β5i, β1i), which can modulate its activity. The proportion of 20S immuno-proteasome varies in different cell types and is increased in cells stimulated by interferon γ (IFNγ) (9, 10). In addition, other 20S proteasome subtypes made up of a mixed assortment of standard catalytic and immuno-subunits were recently described (11). These intermediate 20S proteasome complexes exist in high proportions in many human organs, but also in human tumor cells and dendritic cells. By generating specific antigenic peptides, intermediate 20S proteasome complexes can trigger an immune response (11). Although changes in the CP composition modulate the relative contribution of the cleavage specificity of each catalytic site, overall proteasome activity is drastically increased by association between the CP and RPs.Cell imaging technologies or subcellular fractionation combined with protein blotting techniques have located proteasome complexes in several cellular compartments, mainly the cytosol, nucleus, and associated with the cytoplasmic face of the ER (12). Unlike these antibody-based techniques, quantitative proteomic approaches provide a global view of the cellular distribution of proteins in all their physiological forms (spliced, post-translationally modified, etc.) (13) and have revealed intracellular proteasome relocalization following DNA damage (14). Given the broad function of proteasomes, in quality control, antigenic peptide generation, or short-lived protein-tuned regulation, the cell is likely to adapt proteasome plasticity and dynamics to meet specific subcellular needs or to respond to stress or other stimuli. However, the precise intracellular subunit composition and distribution of proteasome complexes remains largely undetermined. This could be explained by the highly dynamic state of proteasome complexes, their heterogeneity and instability, which make them inherently difficult to study. To deal with this, efficient strategies are needed to purify and quantify fully assembled, active proteasome complexes in homogeneous cellular fractions. These strategies will help us to understand how cells adapt proteasome activity to their needs.In vivo formaldehyde cross-linking can be an efficient tool to study protein–protein interactions and cellular networks (15). It has recently been used to stabilize labile proteasome complexes, allowing the study of the proteasome network in yeast (16) and human cells (17) by quantitative proteomic analyses.In this article, we describe an integrated strategy combining in vivo cross-linking, efficient cell fractionation, affinity purification, and robust label-free quantitative proteomics. We have used this strategy to determine the intracellular distribution of fully assembled active proteasome complexes in human leukemic cells for the first time. Following IFNγ stimulation, our strategy also revealed recruitment of specific PIPs (known to participate in the UPS) to microsomal proteasome complexes. This suggests an important role for these complexes in the endoplasmic reticulum associated degradation (ERAD) pathway.  相似文献   

4.
The 20 S proteasome complexes are major contributors to the intracellular protein degradation machinery in mammalian cells. Systematic administration of proteasome inhibitors to combat disease (e.g. cancer) has resulted in positive outcomes as well as adversary effects. The latter was attributed to, at least in part, a lack of understanding in the organ-specific responses to inhibitors and the potential diversity of proteomes of these complexes in different tissues. Accordingly, we conducted a proteomic study to characterize the 20 S proteasome complexes and their postulated organ-specific responses in the heart and liver. The cardiac and hepatic 20 S proteasomes were isolated from the same mouse strain with identical genetic background. We examined the molecular composition, complex assembly, post-translational modifications and associating partners of these proteasome complexes. Our results revealed an organ-specific molecular organization of the 20 S proteasomes with distinguished patterns of post-translational modifications as well as unique complex assembly characteristics. Furthermore, the proteome diversities are concomitant with a functional heterogeneity of the proteolytic patterns exhibited by these two organs. In particular, the heart and liver displayed distinct activity profiles to two proteasome inhibitors, epoxomicin and Z-Pro-Nle-Asp-H. Finally, the heart and liver demonstrated contrasting regulatory mechanisms from the associating partners of these proteasomes. The functional heterogeneity of the mammalian 20 S proteasome complexes underscores the concept of divergent proteomes among organs in the context of an identical genome.  相似文献   

5.
The proteasome-dependent protein degradation participates in multiple essential cellular processes. Modulation of proteasomal activities may alter cardiac function and disease phenotypes. However, cardiovascular studies reported thus far have yielded conflicting results. We hypothesized that a contributing factor to the contradicting literature may be caused by existing proteasome heterogeneity in the myocardium. In this investigation, we provide the very first direct demonstration of distinct proteasome subpopulations in murine hearts. The cardiac proteasome subpopulations differ in their molecular compositions and proteolytic activities. Furthermore they were distinguished from proteasome subpopulations identified in murine livers. The study was facilitated by the development of novel protocols for in-solution isoelectric focusing of multiprotein complexes in a laminar flow that support an average resolution of 0.04 pH units. Utilizing these protocols, the majority of cardiac proteasome complexes displayed an isoelectric point of 5.26 with additional subpopulations focusing in the range from pH 5.10 to 5.33. In contrast, the majority of hepatic 20 S proteasomes had a pI of 5.05 and focused from pH 5.01 to 5.29. Importantly proteasome subpopulations degraded specific model peptides with different turnover rates. Among cardiac subpopulations, proteasomes with an approximate pI of 5.21 showed 40% higher trypsin-like activity than those with pI 5.28. Distinct proteasome assembly may be a contributing factor to variations in proteolytic activities because proteasomes with pI 5.21 contained 58% less of the inducible subunit beta 2i compared with those with pI 5.28. In addition, dephosphorylation of 20 S proteasomes demonstrated that besides molecular composition posttranslational modifications largely contribute to their pI values. These data suggest the possibility of mixed 20 S proteasome assembly, a departure from the currently hypothesized two subpopulations: constitutive and immuno forms. The identification of multiple distinct proteasome subpopulations in heart provides key mechanistic insights for achieving selective and targeted regulation of this essential protein degradation machinery. Thus, proteasome subpopulations may serve as novel therapeutic targets in the myocardium.  相似文献   

6.
7.
In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged α7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28γ regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28γ complexes in the NS. Here, we show that knockdown of these complexes by small interfering RNAs directed against PA28γ strongly impacts the organization of the NS. Further analysis of PA28γ-depleted cells demonstrated an alteration of intranuclear trafficking of SR proteins. Thus, our data identify proteasome-PA28γ complexes as a novel regulator of NS organization and function, acting most likely through selective proteolysis. These results constitute the first demonstration of a role of a specific proteasome complex in a defined subnuclear compartment and suggest that proteolysis plays important functions in the precise control of splicing factors trafficking within the nucleus.  相似文献   

8.
单颗粒电镜结合其他方法能够在(近)原子水平提供结构模型,已经成为一种研究大蛋白复合物的有效方法。该文将以两个大的蛋白裂解复合物——tripeptidyl peptidaseII(6MDa)和26S蛋白酶体(2.5MDa)举例说明。低温电子层析能进行非重复的超分子结构分析,如多核糖体和全细胞;能够为超分子组织提供前所未有的信息(可视化蛋白质组学)。  相似文献   

9.
Kinetochores are macromolecular proteinaceous assemblies that are assembled on centromeres and attach chromosomes to the spindle fibres and regulate the accurate transmission of genetic material to daughter cells. Multiple protein sub-complexes within this supramolecular assembly are hierarchically assembled and contribute to the different aspects of kinetochore function. In this work we show that one of the components of the Saccharomyces cerevisiae kinetochore, Nkp2, plays an important role in ensuring accurate segregation of chromosomes. Although this protein is not conserved in higher organisms, we show that it interacts with highly conserved components of the kinetochore genetically and regulates chromosome segregation. We show that in kinetochore mutants like ctf19 and mcm21 the protein is mislocalized. Furthermore, removal of Nkp2 in these mutants restores normal levels of segregation.  相似文献   

10.
As proteomics initiatives mature, the need will arise for the multiple visualization of proteins and supramolecular complexes within their true context, in situ. Single-stranded DNA and RNA aptamers can be used for low resolution imaging of cellular receptors and cytoplasmic proteins by light microscopy (LM). These techniques, however, cannot be applied to the imaging of nuclear antigens as these single-stranded aptamers bind endogenous RNA and DNA with high affinity. To overcome this problem, we have developed a novel method for the in situ detection of proteins using double-stranded DNA oligonucleotides. To demonstrate this system we have utilized the prokaryotic DNA-binding proteins LacI and TetR as peptide tags to image fusion proteins in situ using dsDNA oligonucleotides encoding either the Lac or Tet operator. Using fluorescent and fluorogold dsDNA oligonucleotides, we localized within the nucleus a TetR–PML fusion protein within promyelocytic leukaemia protein (PML) bodies by LM and a LacI–SC35 fusion protein within nuclear speckles by correlative light and electron microscopy (LM/EM). Isolation of LacI–SC35 was also accomplished by using biotinylated dsDNA and streptavidin sepharose. The use of dsDNA oligonucleotides should complement existing aptamer in situ detection techniques by allowing the multiple detection and localization of nuclear proteins in situ and at high resolution.  相似文献   

11.
Placental malfunction induces pregnancy disorders which contribute to life-threatening complications for both the mother and the fetus. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta. 733 unique proteins and 34 known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein 2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunofluorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes. This work paves the way for deeper functional characterization of the placental protein complexes associated with pregnancy disorders.  相似文献   

12.
Most mitochondrial mRNAs in trypanosomatid parasites require uridine insertion/deletion RNA editing, a process mediated by guide RNA (gRNA) and catalyzed by multi-protein complexes called editosomes. The six oligonucleotide/oligosaccharide binding (OB)-fold proteins (KREPA1-A6), are a part of the common core of editosomes. They form a network of interactions among themselves as well as with the insertion and deletion sub-complexes and are essential for the stability of the editosomes. KREPA4 and KREPA6 proteins bind gRNA in vitro and are known to interact directly in yeast two-hybrid analysis. In this study, using several approaches we show a minimal interaction surface of the KREPA4 protein that is required for this interaction. By screening a series of N- and C-terminally truncated KREPA4 fragments, we show that a predicted α-helix of KREPA4 OB-fold is required for its interaction with KREPA6. An antibody against the KREPA4 α-helix or mutations of this region can eliminate association with KREPA6; while a peptide fragment corresponding to the α-helix can independently interact with KREPA6, thereby supporting the identification of KREPA4-KREPA6 interface. We also show that the predicted OB-fold of KREPA4; independent of its interaction with gRNA, is responsible for the stable integration of KREPA4 in the editosomes, and editing complexes co-purified with the tagged OB-fold can catalyze RNA editing. Therefore, we conclude that while KREPA4 interacts with KREPA6 through the α-helix region of its OB-fold, the entire OB-fold is required for its integration in the functional editosome, through additional protein-protein interactions.  相似文献   

13.
Hepatitis C virus (HCV) F protein is encoded by the +1 reading frame of the viral genome. It overlaps with the core protein coding sequence, and multiple mechanisms for its expression have been proposed. The full-length F protein that is synthesized by translational ribosomal frameshift at codons 9 to 11 of the core protein sequence is a labile protein. By using a combination of genetic, biochemical, and cell biological approaches, we demonstrate that this HCV F protein can bind to the proteasome subunit protein α3, which reduces the F-protein level in cells in a dose-dependent manner. Deletion-mapping analysis identified amino acids 40 to 60 of the F protein as the α3-binding domain. This α3-binding domain of the F protein together with its upstream sequence could significantly destabilize the green fluorescent protein, an otherwise stable protein. Further analyses using an F-protein mutant lacking lysine and a cell line that contained a temperature-sensitive E1 ubiquitin-activating enzyme indicated that the degradation of the F protein was ubiquitin independent. Based on these observations as well as the observation that the F protein could be degraded directly by the 20S proteasome in vitro, we propose that the full-length HCV F protein as well as the F protein initiating from codon 26 is degraded by an ubiquitin-independent pathway that is mediated by the proteasome subunit α3. The ability of the F protein to bind to α3 raises the possibility that the HCV F protein may regulate protein degradation in cells.  相似文献   

14.
The PA28 complexes (also termed REG or 11S complexes) are described as activators of the 20S proteasome, a major intracellular protease in eukaryotic cells. They bind to the ends of the barrel-shaped 20S proteasome, and activate its peptidase activities. The interferon γ inducible PA28αβ, made of the two related subunits PA28α and β, is under sustained investigation as it plays important roles in the production by the proteasome of class I antigen peptides. However, in vitro studies of this complex have been impaired by the difficulty of producing large amount of this protein, mainly due to the poor solubility of its β subunit when expressed in Escherichia coli. Here we describe the construction of a bicistronic vector, allowing simultaneous production of functional human PA28α and β subunits in E. coli. Co-expression of the two proteins allows efficient formation of active PA28αβ complexes, that remain soluble and can be easily purified by regular chromatographic procedures.  相似文献   

15.
Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson''s disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased α-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and α-synclein aggregation.  相似文献   

16.
17.
Exosomes, important players in cell–cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9‐ and CD63‐positive, Annexin I‐negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells. We also identify GPRC5C (G protein‐coupled receptor class C group 5 member C) as an apical exosome‐specific protein. We further demonstrate that basolateral exosome release depends on ceramide, whereas ALIX, an ESCRT (endosomal sorting complexes required for transport)‐related protein, not the ESCRT machinery itself, is required for apical exosome release. Thus, two independent machineries, the ALIX–Syntenin1–Syndecan1 machinery (apical side) and the sphingomyelinase‐dependent ceramide production machinery (basolateral side), are likely to be responsible for the polarized exosome release from epithelial cells.  相似文献   

18.
Detailed knowledge of the composition of protein complexes is crucial for the understanding of their structure and function; however, appropriate techniques for compositional analyses of complexes largely rely on elaborate tagging, immunoprecipitation, cross-linking and purification strategies. The proteasome is a prototypical protein complex and therefore an excellent model to assess new methods for protein complex characterisation. Here we evaluated the applicability of Blue Native (BN) PAGE in combination with label-free protein quantification and protein correlation profiling (PCP) for the investigation of proteasome complexes directly from biological samples. Using the purified human 20S proteasome we showed that the approach can accurately detect members of a complex by clustering their gel migration profiles. We applied the approach to address proteasome composition in the schizont stage of the malaria parasite Plasmodium falciparum. The analysis, performed in the background of the whole protein extract, revealed that all subunits comigrated and formed a tight cluster with a single maximum, demonstrating presence of a single form of the 20S proteasome. This study shows that BN PAGE in combination with label-free quantification and PCP is applicable to the analysis of multiprotein complexes directly from complex protein mixtures.  相似文献   

19.
Electron microscopy (EM) continues to provide near‐atomic resolution structures for well‐behaved proteins and protein complexes. Unfortunately, structures of some complexes are limited to low‐ to medium‐resolution due to biochemical or conformational heterogeneity. Thus, the application of unbiased systematic methods for fitting individual structures into EM maps is important. A method that employs co‐evolutionary information obtained solely from sequence data could prove invaluable for quick, confident localization of subunits within these structures. Here, we incorporate the co‐evolution of intermolecular amino acids as a new type of distance restraint in the integrative modeling platform in order to build three‐dimensional models of atomic structures into EM maps ranging from 10–14 Å in resolution. We validate this method using four complexes of known structure, where we highlight the conservation of intermolecular couplings despite dynamic conformational changes using the BAM complex. Finally, we use this method to assemble the subunits of the bacterial holo‐translocon into a model that agrees with previous biochemical data. The use of evolutionary couplings in integrative modeling improves systematic, unbiased fitting of atomic models into medium‐ to low‐resolution EM maps, providing additional information to integrative models lacking in spatial data.  相似文献   

20.
Aberrations in the ubiquitin-proteasome system (UPS) are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR) and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86±15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2±8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92±22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7±0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasme activity. Proteasome activity was significantly reduced by 67±4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号