共查询到20条相似文献,搜索用时 15 毫秒
1.
A Highlights from MBoC Selection: Coordination of Grp1 recruitment mechanisms by its phosphorylation
The action of guanine nucleotide exchange factors (GEFs) on the ADP-ribosylation factor (ARF) family of small GTPases initiates intracellular transport pathways. This role requires ARF GEFs to be recruited from the cytosol to intracellular membrane compartments. An ARF GEF known as General receptor for 3-phosphoinositides 1 (Grp1) is recruited to the plasma membrane through its pleckstrin homology (PH) domain that recognizes phosphatidylinositol 3,4,5-trisphosphate (PIP3). Here, we find that the phosphorylation of Grp1 induces its PH domain to recognize instead phosphatidylinositol 4-phosphate (PI4P). This phosphorylation also releases an autoinhibitory mechanism that results in the coil–coil (CC) domain of Grp1 engaging two peripheral membrane proteins of the recycling endosome. Because the combination of these actions results in Grp1 being recruited preferentially to the recycling endosome rather than to the plasma membrane, our findings reveal the complexity of recruitment mechanisms that need to be coordinated in localizing an ARF GEF to an intracellular compartment to initiate a transport pathway. Our elucidation is also remarkable for having revealed that phosphoinositide recognition by a PH domain can be switched through its phosphorylation. 相似文献
2.
3.
4.
Lauren J. Sundby William M. Southern Katelin M. Hawbaker Jesús M. Trujillo Benjamin J. Perrin James M. Ervasti 《Molecular biology of the cell》2022,33(9)
Cytoplasmic β- and γ-actin proteins are 99% identical but support unique organismal functions. The cytoplasmic actin nucleotide sequences Actb and Actg1, respectively, are more divergent but still 89% similar. Actb–/– mice are embryonic lethal and Actb–/– cells fail to proliferate, but editing the Actb gene to express γ-actin (Actbc–g) resulted in none of the overt phenotypes of the knockout revealing protein-independent functions for Actb. To determine if Actg1 has a protein-independent function, we crossed Actbc–g and Actg1–/– mice to generate the bG/0 line, where the only cytoplasmic actin expressed is γ-actin from Actbc–g. The bG/0 mice were viable but showed a survival defect despite expressing γ-actin protein at levels no different from bG/gG with normal survival. A unique myopathy phenotype was also observed in bG/0 mice. We conclude that impaired survival and myopathy in bG/0 mice are due to loss of Actg1 nucleotide-dependent function(s). On the other hand, the bG/0 genotype rescued functions impaired by Actg1–/–, including cell proliferation and auditory function, suggesting a role for γ-actin protein in both fibroblasts and hearing. Together, these results identify nucleotide-dependent functions for Actg1 while implicating γ-actin protein in more cell-/tissue-specific functions. 相似文献
5.
Rory J. Flinn Ying Yan Sumanta Goswami Peter J. Parker Jonathan M. Backer 《Molecular biology of the cell》2010,21(5):833-841
The multisubunit mTORC1 complex integrates signals from growth factors and nutrients to regulate protein synthesis, cell growth, and autophagy. To examine how endocytic trafficking might be involved in nutrient regulation of mTORC1, we perturbed specific endocytic trafficking pathways and measured mTORC1 activity using S6K1 as a readout. When early/late endosomal conversion was blocked by either overexpression of constitutively active Rab5 (Rab5CA) or knockdown of the Rab7 GEF hVps39, insulin- and amino acid–stimulated mTORC1/S6K1 activation were inhibited, and mTOR localized to hybrid early/late endosomes. Inhibition of other stages of endocytic trafficking had no effect on mTORC1. Overexpression of Rheb, which activates mTOR independently of mTOR localization, rescued mTORC1 signaling in cells expressing Rab5CA, whereas hyperactivation of endogenous Rheb in TSC2−/− MEFs did not. These data suggest that integrity of late endosomes is essential for amino acid– and insulin-stimulated mTORC1 signaling and that blocking the early/late endosomal conversion prevents mTOR from interacting with Rheb in the late endosomal compartment. 相似文献
6.
D. Portran M. Zoccoler J. Gaillard V. Stoppin-Mellet E. Neumann I. Arnal J. L. Martiel M. Vantard 《Molecular biology of the cell》2013,24(12):1964-1973
Microtubules (MTs) are dynamic cytoskeletal elements involved in numerous cellular processes. Although they are highly rigid polymers with a persistence length of 1–8 mm, they may exhibit a curved shape at a scale of few micrometers within cells, depending on their biological functions. However, how MT flexural rigidity in cells is regulated remains poorly understood. Here we ask whether MT-associated proteins (MAPs) could locally control the mechanical properties of MTs. We show that two major cross-linkers of the conserved MAP65/PRC1/Ase1 family drastically decrease MT rigidity. Their MT-binding domain mediates this effect. Remarkably, the softening effect of MAP65 observed on single MTs is maintained when MTs are cross-linked. By reconstituting physical collisions between growing MTs/MT bundles, we further show that the decrease in MT stiffness induced by MAP65 proteins is responsible for the sharp bending deformations observed in cells when they coalign at a steep angle to create bundles. Taken together, these data provide new insights into how MAP65, by modifying MT mechanical properties, may regulate the formation of complex MT arrays. 相似文献
7.
Travis A. Dittmer Nidhi Sahni Nard Kubben David E. Hill Marc Vidal Rebecca C. Burgess Vassilis Roukos Tom Misteli 《Molecular biology of the cell》2014,25(9):1493-1510
Laminopathies are a collection of phenotypically diverse diseases that include muscular dystrophies, cardiomyopathies, lipodystrophies, and premature aging syndromes. Laminopathies are caused by >300 distinct mutations in the LMNA gene, which encodes the nuclear intermediate filament proteins lamin A and C, two major architectural elements of the mammalian cell nucleus. The genotype–phenotype relationship and the basis for the pronounced tissue specificity of laminopathies are poorly understood. Here we seek to identify on a global scale lamin A–binding partners whose interaction is affected by disease-relevant LMNA mutations. In a screen of a human genome–wide ORFeome library, we identified and validated 337 lamin A–binding proteins. Testing them against 89 known lamin A disease mutations identified 50 disease-associated interactors. Association of progerin, the lamin A isoform responsible for the premature aging disorder Hutchinson–Gilford progeria syndrome, with its partners was largely mediated by farnesylation. Mapping of the interaction sites on lamin A identified the immunoglobulin G (IgG)–like domain as an interaction hotspot and demonstrated that lamin A variants, which destabilize the Ig-like domain, affect protein–protein interactions more globally than mutations of surface residues. Analysis of a set of LMNA mutations in a single residue, which result in three phenotypically distinct diseases, identified disease-specific interactors. The results represent a systematic map of disease-relevant lamin A interactors and suggest loss of tissue-specific lamin A interactions as a mechanism for the tissue-specific appearance of laminopathic phenotypes. 相似文献
8.
Marc Leshner Michelle Devine Gregory W. Roloff Lawrence D. True Tom Misteli Karen J. Meaburn 《Molecular biology of the cell》2016,27(2):236-246
Genes occupy preferred spatial positions within interphase cell nuclei. However, positioning patterns are not an innate feature of a locus, and genes can alter their localization in response to physiological and pathological changes. Here we screen the radial positioning patterns of 40 genes in normal, hyperplasic, and malignant human prostate tissues. We find that the overall spatial organization of the genome in prostate tissue is largely conserved among individuals. We identify three genes whose nuclear positions are robustly altered in neoplastic prostate tissues. FLI1 and MMP9 position differently in prostate cancer than in normal tissue and prostate hyperplasia, whereas MMP2 is repositioned in both prostate cancer and hyperplasia. Our data point to locus-specific reorganization of the genome during prostate disease. 相似文献
9.
Charlotte Kaplan Sam J. Kenny Xuyan Chen Johannes Schneberg Ewa Sitarska Alba Diz-Muoz Matthew Akamatsu Ke Xu David G. Drubin 《Molecular biology of the cell》2022,33(6)
Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly–mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions. 相似文献
10.
Nicholas J. Day Mary Ellenbecker Xiaobo Wang Ekaterina Voronina 《Molecular biology of the cell》2022,33(5)
Germ granules are cytoplasmic assemblies of RNA-binding proteins (RBPs) required for germ cell development and fertility. During the first four cell divisions of the Caenorhabditis elegans zygote, regulated assembly of germ (P) granules leads to their selective segregation to the future germ cell. Here we investigate the role of DLC-1, a hub protein implicated in stabilization and function of diverse protein complexes, in maintaining P granule integrity. We find that DLC-1 directly interacts with several core P granule proteins, predominantly during embryogenesis. The loss of dlc-1 disrupts assembly of P granule components into phase-separated organelles in the embryos, regardless of whether or not DLC-1 directly interacts with these proteins. Finally, we infer that P granule dispersal in the absence of dlc-1 is likely independent of DLC-1’s function as a subunit of the dynein motor and does not result from a loss of cell polarity. 相似文献
11.
Laura K. Baker David C. Gillis Sarika Sharma Andy Ambrus Harald Herrmann Gloria M. Conover 《Molecular biology of the cell》2013,24(12):1918-1932
Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle. 相似文献
12.
Matej Krajcovic Shefali Krishna Leila Akkari Johanna A. Joyce Michael Overholtzer 《Molecular biology of the cell》2013,24(23):3736-3745
Macroendocytic vacuoles formed by phagocytosis, or the live-cell engulfment program entosis, undergo sequential steps of maturation, leading to the fusion of lysosomes that digest internalized cargo. After cargo digestion, nutrients must be exported to the cytosol, and vacuole membranes must be processed by mechanisms that remain poorly defined. Here we find that phagosomes and entotic vacuoles undergo a late maturation step characterized by fission, which redistributes vacuolar contents into lysosomal networks. Vacuole fission is regulated by the serine/threonine protein kinase mammalian target of rapamycin complex 1 (mTORC1), which localizes to vacuole membranes surrounding engulfed cells. Degrading engulfed cells supply engulfing cells with amino acids that are used in translation, and rescue cell survival and mTORC1 activity in starved macrophages and tumor cells. These data identify a late stage of phagocytosis and entosis that involves processing of large vacuoles by mTOR-regulated membrane fission. 相似文献
13.
David C. Gershlick Christina Schindler Yu Chen Juan S. Bonifacino 《Molecular biology of the cell》2016,27(18):2867-2878
Endosomes function as a hub for multiple protein-sorting events, including retrograde transport to the trans-Golgi network (TGN) and recycling to the plasma membrane. These processes are mediated by tubular-vesicular carriers that bud from early endosomes and fuse with a corresponding acceptor compartment. Two tethering complexes named GARP (composed of ANG2, VPS52, VPS53, and VPS54 subunits) and EARP (composed of ANG2, VPS52, VPS53, and Syndetin subunits) were previously shown to participate in SNARE-dependent fusion of endosome-derived carriers with the TGN and recycling endosomes, respectively. Little is known, however, about other proteins that function with GARP and EARP in these processes. Here we identify a protein named TSSC1 as a specific interactor of both GARP and EARP and as a novel component of the endosomal retrieval machinery. TSSC1 is a predicted WD40/β-propeller protein that coisolates with both GARP and EARP in affinity purification, immunoprecipitation, and gel filtration analyses. Confocal fluorescence microscopy shows colocalization of TSSC1 with both GARP and EARP. Silencing of TSSC1 impairs transport of internalized Shiga toxin B subunit to the TGN, as well as recycling of internalized transferrin to the plasma membrane. Fluorescence recovery after photobleaching shows that TSSC1 is required for efficient recruitment of GARP to the TGN. These studies thus demonstrate that TSSC1 plays a critical role in endosomal retrieval pathways as a regulator of both GARP and EARP function. 相似文献
14.
Christina M. Van Itallie Amber Jean Tietgens Evan Krystofiak Bechara Kachar James M. Anderson 《Molecular biology of the cell》2015,26(15):2769-2787
Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin. 相似文献
15.
Irina Semenova Kazuho Ikeda Karim Resaul Pavel Kraikivski Mike Aguiar Steven Gygi Ilya Zaliapin Ann Cowan Vladimir Rodionov 《Molecular biology of the cell》2014,25(20):3119-3132
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect. 相似文献
16.
17.
The nucleomorphin gene numA1 from Dictyostelium codes for a multi-domain, calmodulin binding protein that regulates nuclear number. To gain insight into the regulation of numA, we assessed the effects of the stalk cell differentiation inducing factor-1 (DIF-1), an extracellular signalling molecule, on the expression of numA1 RNA and protein. For comparison, the extracellular signalling molecules cAMP (mediates chemotaxis, prestalk and prespore differentiation) and ammonia (NH3/NH4+; antagonizes DIF) were also studied. Starvation, which is a signal for multicellular development, results in a greater than 80% decrease in numA1 mRNA expression within 4 h. Treatment with ammonium chloride led to a greater than 90% inhibition of numA1 RNA expression within 2 h. In contrast, the addition of DIF-1 completely blocked the decrease in numA1 gene expression caused by starvation. Treatment of vegetative cells with cAMP led to decreases in numA1 RNA expression that were equivalent to those seen with starvation. Western blotting after various morphogen treatments showed that the maintenance of vegetative levels of numA1 RNA by DIF-1 in starved cells was reflected in significantly increased numA1 protein levels. Treatment with cAMP and/or ammonia led to decreased protein expression and each of these morphogens suppressed the stimulatory effects of DIF-1. Protein expression levels of CBP4a, a calcium-dependent binding partner of numA1, were regulated in the same manner as numA1 suggesting this potential co-regulation may be related to their functional relationship. NumA1 is the first calmodulin binding protein shown to be regulated by developmental morphogens in Dictyostelium being upregulated by DIF-1 and down-regulated by cAMP and ammonia. 相似文献
18.
Anton Burakov Ivan Vorobjev Irina Semenova Ann Cowan John Carson Yi Wu Vladimir Rodionov 《Molecular biology of the cell》2021,32(5):435
Microtubules (MTs) often form a polarized array with minus ends anchored at the centrosome and plus ends extended toward the cell margins. Plus ends display behavior known as dynamic instability—transitions between rapid shortening and slow growth. It is known that dynamic instability is regulated locally to ensure entry of MTs into nascent areas of the cytoplasm, but details of this regulation remain largely unknown. Here, we test an alternative hypothesis for the local regulation of MT behavior. We used microsurgery to isolate a portion of peripheral cytoplasm from MTs growing from the centrosome, creating cytoplasmic areas locally depleted of MTs. We found that in sparsely populated areas MT plus ends persistently grew or paused but never shortened. In contrast, plus ends that entered regions of cytoplasm densely populated with MTs frequently transitioned to shortening. Persistent growth of MTs in sparsely populated areas could not be explained by a local increase in concentration of free tubulin subunits or elevation of Rac1 activity proposed to enhance MT growth at the cell leading edge during locomotion. These observations suggest the existence of a MT density–dependent mechanism regulating MT dynamics that determines dynamic instability of MTs in densely populated areas of the cytoplasm and persistent growth in sparsely populated areas. 相似文献
19.
Per O. Widlund Marija Podolski Simone Reber Joshua Alper Marko Storch Anthony A. Hyman Jonathon Howard David N. Drechsel 《Molecular biology of the cell》2012,23(22):4393-4401
We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research. 相似文献