首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In order for any organism to function properly, it is crucial that it be table to control the timing of its biological functions. An internal biological clock, located, in mammals, in the suprachiasmatic nucleus of the hypothalamus (SCN), therefore carefully guards this temporal homeostasis by delivering its message of time throughout the body. In view of the large variety of body functions (behavioral, physiological, and endocrine) as well as the large variety in their preferred time of main activity along the light:dark cycle, it seems logical to envision different means of time distribution by the SCN. In the present review, we propose that even though it presents a unimodal circadian rhythm of general electrical and metabolic activity, the SCN seems to use several sorts of output connections that are active at different times along the light: dark cycle to control the rhythmic expression of different body functions. Although the SCN is suggested to use diffusion of synchronizing factors in the rhythmic control of behavioral functions, it also needs neuronal connections for the control of endocrine functions. The distribution of the time-of-day message to neuroendocrine systems is either directly onto endocrine neurons or via intermediate neurons located in specific SCN targets. In addition, the SCN uses its connections with the autonomic nervous system for spreading its time-of-day message, either by setting the sensitivity of endocrine glands (i.e., thyroid, adrenal, ovary) or by directly controlling an endocrine output (i.e., melatonin synthesis). Moreover, the SCN seems to use different neurotransmitters released at different times along the light: dark cycle for each of the different connection types presented. Clearly, the temporal homeostasis of endocrine functions results from a diverse set of biological clock outputs.  相似文献   

3.
4.
Microscope laser light scattering spectroscopy of single biological cells   总被引:4,自引:0,他引:4  
A microscope laser light scattering setup was developed, allowing us to do intensity autocorrelation spectroscopy on the light scattered from a volume as small as (2 micron)3. This non-invasive technique makes cytoplasmic studies possible inside single live biological cells. The effect of osmotic swelling and shrinking on the diffusion coefficient of hemoglobin inside intact red blood cells is shown as an illustrative example of the applicability and sensitivity of this new experimental method.  相似文献   

5.
Microscope laser light scattering spectroscopy of single biological cells   总被引:1,自引:0,他引:1  
A microscope laser light scattering setup was developed, allowing us to do intensity autocorrelation spectroscopy on the light scattered from a volume as small as (2 μm)3. This non-invasive technique makes cytoplasmic studies possible inside single live biological cells. The effect of osmotic swelling and shrinking on the diffusion coefficient of hemoglobin inside intact red blood cells is shown as an illustrative example of the applicability and sensitivity of this new experimental method.  相似文献   

6.
7.
During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i) the precision of division site placement (at which molecular noise is highly suppressed) and (ii) the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i) and allowance of noise in example (ii)] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions.  相似文献   

8.
9.
V79 Chinese hamster cells were irradiated in the presence of different amounts of boric acid with thermal neutrons at the Medical Research Reactor at Brookhaven National Laboratory. From the linear dose-survival curves observed, a D0 value of 66 rad for the 10B(n, alpha) 7Li neutron capture reaction was obtained. No dependence of this value on the concentration of boric acid was found. Comparing this value to the D0 value of 150 rad obtained with 250 kVp X rays between 10 and 0.01% survival, an extrapolated RBE value of 2.3 was calculated. By irradiation of the same line of cells with cold neutrons at the Institut Laue - Langevin , a D0 value for the 14N(n,p)14C reaction of 77 rad was obtained, with a corresponding RBE value of 1.9. Comparison is made with previously published RBE values for the 10B(n, alpha) 7Li reaction.  相似文献   

10.
11.
12.
13.
14.
A personal account of the early problems associated with contrast in images obtained by electron microscopy from biological specimens is presented, together with the effects of electron beam damage. The author's experiences with different types of electron microscope as well as problems of contrast enhancement is described. A short account is given of the physical effects occuring during specimen preparation and their relation to structural preservation when attempting to achieve atomic resolution. Recent developments in biological electron microscopy are also discussed with a view to future trends.  相似文献   

15.
胡钧  张益  李宾  H.B.Gao  U.Haitmann  李民乾 《生命科学》2003,15(4):248-250,202
本文以单分子纳米操纵为主题,介绍物理学与生物学交叉研究的重要领域之一——纳米生物学和纳米生物技术等新领域,着重讨论了单个DNA分子的纳米操纵以及它的可能应用。  相似文献   

16.
17.
The role of caveolins, signature proteins of caveolae, in arterial Ca(2+) regulation is unknown. We investigated modulation of Ca(2+) homeostasis by caveolin-1 and caveolin-3 using smooth muscle cells from rat cerebral resistance arteries. Membrane current and Ca(2+) transients were simultaneously measured with voltage-clamped single cells. Membrane depolarization triggered Ca(2+) current and increased intracellular Ca(2+) concentration ([Ca(2+)](i)). After repolarization, elevated [Ca(2+)](i) returned to the resting level. Ca(2+) removal rate was determined from the declining phase of the Ca(2+) transient. Application of caveolin-1 antibody or caveolin-1 scaffolding domain peptide, corresponding to amino acid residues 82-101 of caveolin-1, significantly slowed Ca(2+) removal rate at a measured [Ca(2+)](i) of 250 nM, with little effect at a measured [Ca(2+)](i) of 600 nM. Application of caveolin-3 antibody or caveolin-3 scaffolding domain peptide, corresponding to amino acid residues 55-74 of caveolin-3, also significantly slowed Ca(2+) removal rate at a measured [Ca(2+)](i) of 250 nM, with little effect at a measured [Ca(2+)](i) of 600 nM. Likewise, application of calmodulin inhibitory peptide, autocamtide-2-related inhibitory peptide, and cyclosporine A, inhibitors for calmodulin, Ca(2+)/calmodulin-dependent protein kinase II, and calcineurin, also significantly inhibited Ca(2+) removal rate at a measured [Ca(2+)](i) of 250 nM but not at 600 nM. Application of cyclopiazonic acid, a sarcoplasmic reticulum Ca(2+) ATPase inhibitor, also significantly inhibited Ca(2+) removal rate at a measured [Ca(2+)](i) of 250 nM but not at 600 nM. Our results suggest that caveolin-1 and caveolin-3 are important in Ca(2+) removal of resistance artery smooth muscle cells.  相似文献   

18.
19.
Despite an increasing molecular-genetic understanding of the development of malignant epithelial neoplasias, the frontline therapy for patients with carcinomas is still surgery. Systemic adjuvant treatments such as chemotherapy or immunotherapy have had limited success perhaps because they are based on analysis of the primary tumour or on cell lines derived from metastasis. However, the characteristics of systemically disseminated tumour cells can be very different from that of the primary tumour or end-stage metastasis. Consequently, there is a need to study the evolution and nature of systemic cancer directly in order to identify new target structures for therapy present on the potential precursors of metastasis--the disseminated tumour cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号