首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crystal structure analysis of the synthetic deoxydodecamer d(CGCAAATTIGCG) which contains two adenosine.inosine (A.I) mispairs has revealed that, in this sequence, the A.I base-pairs adopt a A(anti).I(syn) configuration. The refinement converged at R = 0.158 for 2004 reflections with F greater than or equal to 2 sigma(F) in the range 7.0-2.5A for a model consisting of the DNA duplex and 71 water molecules. A notable feature of the structure is the presence of an almost complete spine of hydration spanning the minor groove of the whole of the (AAATTI)2 core region of the duplex. pH-dependent ultraviolet melting studies have suggested that the base-pair observed in the crystal structure is, in fact, a protonated AH+ (anti).I(syn) species and that the A.I base-pairs in the sequence studied display the same conformational variability as A.G mispairs in the sequence d(CGCAAATTGGCG). The AH+(anti).I(syn) base-pair predominates below pH 6.5 and an A(anti).I(anti) mispair is the major species present between pH 6.5 and 8.0. The protonated base-pairs are held together by two hydrogen bonds one between N6(A) and O6(I) and the other between N1(A) and N7(I). This second hydrogen bond is a direct result of the protonation of the N1 of adenosine. The ultraviolet melting studies indicate that the A(anti).I(anti) base-pair is more stable than the A(anti).G(anti) base-pair but that the AH+(anti).I(syn) base pair is less stable than its AH+(anti).G(syn) analogue. Possible reasons for this observation are discussed.  相似文献   

2.
X-ray, phylogenetic and quantum chemical analysis of molecular interactions and conservation patterns of cis Watson-Crick (W.C.) A/G base-pairs in 16S rRNA, 23S rRNA and other molecules was carried out. In these base-pairs, the A and G nucleotides interact with their W.C. edges with glycosidic bonds oriented cis relative to each other. The base-pair is stabilised by two hydrogen bonds, the C1'-C1' distance is enlarged and the G(N2) amino group is left unpaired. Quantum chemical calculations show that, in the absence of other interactions, the unpaired amino group is substantially non-planar due to its partial sp(3) pyramidalization, while the whole base-pair is internally propeller twisted and very flexible. The unique molecular properties of the cis W.C. A/G base-pairs make them distinct from other base-pairs. They occur mostly at the ends of canonical helices, where they serve as interfaces between the helix and other motifs. The cis W.C. A/G base-pairs play crucial roles in natural RNA structures with salient sequence conservation patterns. The key contribution to conservation is provided by the unpaired G(N2) amino group that is involved in a wide range of tertiary and neighbor contacts in the crystal structures. Many of them are oriented out of the plane of the guanine base and utilize the partial sp(3) pyramidalization of the G(N2). There is a lack of A/G to G/A covariation, which, except for the G(N2) position, would be entirely isosteric. On the contrary, there is a rather frequent occurrence of G/A to G/U covariation, as the G/U wobble base-pair has an unpaired amino group in the same position as the cis W.C. G/A base-pair. The cis W.C. A/G base-pairs are not conserved when there is no tertiary or neighbor interaction. Obtaining the proper picture of the interactions and phylogenetic patterns of the cis W.C. A/G base-pairs requires a detailed analysis of the relation between the molecular structures and the energetics of interactions at a level of single H-bonds and contacts.  相似文献   

3.
The solution structure of an RNA hairpin modelling the P5 helix of a group I intron, complexed with Co(NH3)63+, has been determined by nuclear magnetic resonance. Co(NH3)63+, which possesses a geometry very close to Mg(H2O)62+, was used to identify and characterize a Mg2+binding site in the RNA. Strong and positive intermolecular nuclear Overhauser effect (NOE) cross-peaks define a specific complex in which the Co(NH3)63+molecule is in the major groove of tandem G.U base-pairs. The structure of the RNA is characterized by a very low twist angle between the two G.U base-pairs, providing a flat and narrowed major groove. The Co(NH3)63+, although highly localized, is free to rotate to hydrogen bond in several ways to the O4 atoms of the uracil bases and to N7 and O6 of the guanine bases. Negative and small NOE cross-peaks to other protons in the sequence reveal a non-specific or delocalized interaction, characterized by a high mobility of the cobalt ion. Mn2+titrations of P5 show specific broadening of protons of the G.U base-pairs that form the metal ion binding site, in agreement with the NOE data from Co(NH3)63+. Binding constants for the interaction of Co(NH3)63+and of Mg2+to P5 were determined by monitoring imino proton chemical shifts during titration of the RNA with the metal ions. Dissociation constants are on the order of 0.1 mM for Co(NH3)63+and 1 mM for Mg2+. Binding studies were done on mutants with sequences corresponding to the three orientations of tandem G.U base-pairs. The affinities of Co(NH3)63+and Mg2+for the tandem G.U base-pairs depend strongly on their sequences; the differences can be understood in terms of the different structures of the corresponding metal ion-RNA complexes. Substitution of G.C or A.U for G.U pairs also affected the binding, as expected. These structural and thermodynamic results provide systematic new information about major groove metal ion binding in RNA.  相似文献   

4.
Inosine.adenine base pairs in a B-DNA duplex.   总被引:13,自引:12,他引:1       下载免费PDF全文
The structure of the synthetic deoxydodecamer d(C-G-C-I-A-A-T-T-A-G-C-G) has been determined by single crystal X-ray diffraction techniques at 2.5A resolution. The refinement converged with a crystallographic residual, R = 0.19 and the location of 64 solvent molecules. The sequence crystallises as a B-DNA helix with 10 Watson-Crick base-pairs (4 A.T. and 6 G.C) and 2 inosine.adenine (I.A) pairs. The present work shows that in the purine.purine base-pairs the adenine adopts syn orientation with respect to the furanose moiety while the inosine is in the trans (anti) orientation. Two hydrogen bonds link the I.A. base-pair, one between N-1(I) and N-7(A), the other between O-6(I) and N-6(A). This bulky purine.purine base-pair is incorporated in the double helix at two positions with little distortion of either local or global conformation. The pairing observed in this study is presented as a model for I.A base-pairs in RNA codon-anticodon interactions and may help explain the thermodynamic stability of inosine containing base-pairs. Conformational parameters and base stacking interactions are presented and where appropriate compared with those of the native compound, d(C-G-C-G-A-A-T-T-C-G-C-G) and with other studies of oligonucleotides containing purine.purine base-pairs.  相似文献   

5.
The structure of d(GGAGGAGGAGGA) containing four tandem repeats of a GGA triplet sequence has been determined under physiological K(+) conditions. d(GGAGGAGGAGGA) folds into an intramolecular quadruplex composed of a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad. Four G-G segments of d(GGAGGAGGAGGA) are aligned parallel with each other due to six successive turns of the main chain at each of the GGA and GAGG segments. Two quadruplexes form a dimer stabilized through a stacking interaction between the heptads of the two quadruplexes. Comparison of the structure of d(GGAGGAGGAGGA) with the reported structure of d(GGAGGAN) (N=G or T) containing two tandem repeats of the GGA triplet revealed that although the two structures resemble each other to some extent, the extension of the repeats of the GGA triplet leads to distinct structural differences: intramolecular quadruplex for 12-mer versus intermolecular quadruplex for 7-mer; heptad versus hexad in the quadruplex; and three sheared G:A base-pairs versus two sheared G:A base-pairs plus one A:A base-pair per quadruplex. It was also suggested that d(GGAGGAGGAGGA) forms a similar quadruplex under low salt concentration conditions. This is in contrast to the case of d(GGAGGAN) (N=G or T), which forms a duplex under low salt concentration conditions. On the basis of these results, the structure of naturally occurring GGA triplet repeat DNA is discussed.  相似文献   

6.
The cloverleaf stem segments of the suppressor gene of bacteriophage T4 tRNA(Gln) contain ten G.C and ten A.U base-pairs. To gain a better appreciation of the G.C base-pair requirement, we isolated multiple mutants of this suppressor gene in which base-pairs of G.C were replaced by A.U. One active suppressor gene contained only A.U base-pairs on the anticodon stem, indicating that G.C base-pairs in this region of tRNA(Gln) are not essential for function. In contrast, replacement was not possible at two base-pairs on the D stem and at one base-pair on the T stem.  相似文献   

7.
A one and two-dimensional nuclear magnetic resonance study of a non-selfcomplementary oligonucleotide containing a central 5-bromouracil-guanine pair is reported. For these two bases three types of hydrogen bonding schemes could exist; wobble, rare tautomer and ionized. The two-dimensional spectra of non-exchangeable protons together with one-dimensional spectra recorded in water show that at pH 7.0 the predominant species is a right-handed B-form DNA in which the brU.G pair has wobble geometry. On raising the pH we observe a transition monitored by proton chemical shift changes for the brU.G and adjacent base-pairs. The mid-point of the transition was observed at pH 8.6. Spectra recorded at pH 9.8 show that the helix remains intact with B form conformation. It is shown that this high pH form has an ionized brU.G base-pair now in Watson-Crick geometry. Thus under physiological conditions an equilibrium exists between wobble and ionized structures.  相似文献   

8.
DNA bending and its relation to nucleosome positioning   总被引:93,自引:0,他引:93  
X-ray and solution studies have shown that the conformation of a DNA double helix depends strongly on its base sequence. Here we show that certain sequence-dependent modulations in structure appear to determine the rotational positioning of DNA about the nucleosome. Three different experiments are described. First, a piece of DNA of defined sequence (169 base-pairs long) is closed into a circle, and its structure examined by digestion with DNAase I: the helix adopts a highly preferred configuration, with short runs of (A, T) facing in and runs of (G, C) facing out. Secondly, the same sequence is reconstituted with a histone octamer: the angular orientation around the histone core remains conserved, apart from a small uniform increase in helix twist. Finally, it is shown that the average sequence content of DNA molecules isolated from chicken nucleosome cores is non-random, as in a reconstituted nucleosome: short runs of (A, T) are preferentially positioned with minor grooves facing in, while runs of (G, C) tend to have their minor grooves facing out. The periodicity of this modulation in sequence content (10.17 base-pairs) corresponds to the helix twist in a local frame of reference (a result that bears on the change in linking number upon nucleosome formation). The determinants of translational positioning have not been identified, but one possibility is that long runs of homopolymer (dA) X (dT) or (dG) X (dC) will be excluded from the central region of the supercoil on account of their resistance to curvature.  相似文献   

9.
The discoidin I genes of Dictyostelium form a small, co-ordinately regulated multigene family. We have sequenced and compared the upstream regions of the DiscI-alpha, -beta and -gamma genes. For the most part the upstream regions of the three genes are non-homologous. The upstream sequences of the beta and gamma genes are exceedingly A + T-rich, while those of the alpha gene are less so. All three genes have a relatively G + C-rich region 20 to 40 base-pairs in length, found approximately 200 base-pairs 5' to the messenger RNA start site. This G + C-rich region 5' to the beta and gamma genes is flanked by short inverted repeats. Within this region, there is an 11 base-pair exact homology between the alpha and gamma genes, and a less perfect homology between these genes and the beta gene. The homology is flanked at a short distance by interspersed G and T residues. The gamma gene is greater than 90% A + T for greater than 800 base-pairs upstream. Further upstream there is a G + C-rich region that is also found inverted approximately 3.5 X 10(3) base-pairs away. The gamma and beta genes are tandemly linked, and the entire approximately 500 base-pair intergene region between the 3' end of the gamma gene and the 5' end of the beta gene is A + T-rich (approximately 90%) with the exception of the homology region 5' to the gamma gene. We demonstrate also the presence of a discoidin I pseudogene fragment having only 139 base-pairs of discoidin homology with greater than 8% mismatch. It is flanked upstream by five 39 base-pair G + C-rich repeats, and downstream by sequences that are extremely A + T-rich. We discuss the possible significance of the conserved G + C-rich structures on discoidin I gene expression.  相似文献   

10.
Sau3A digestion of human G + C-rich DNA molecules yields discrete bands of approximately 70 and 140 base-pairs, under-represented in A + T-rich DNA molecules and in total DNA. We have cloned the 70 base-pair band in a plasmid vector and isolated a representative recombinant clone that identifies a new human family of repeats, the Sau3A family. The new family has been characterized for a number of parameters: genomic organization; reiteration frequency; sequence analysis; and distribution in a human genomic library. The Sau3A sequence (68 base-pairs in length, 53% G + C) is present in approximately 4 X 10(4) copies/haploid genome; the family is characterized by a cluster organization and is confined to a limited fraction (0.5%) of phages of a human genomic library. Southern blot hybridizations of the cloned sequence to restriction digests of total human DNA and of isolated genomic clones does not show the involvement of Sau3A blocks in long-range periodicities for any of the enzymes tested. The data suggest either a high sequence variability in the family or a complex organization of Sau3A sequence domains.  相似文献   

11.
A 5 kb region of the 95 kb mitochondrial genome of Podospora anserina race s has been mapped and sequenced (1 kb = 10(3) base-pairs). This DNA region is continuous with the sequence for the ND4L and ND5 gene complex in the accompanying paper. We show that this sequence contains the gene for cytochrome oxidase subunit II (COII). This gene is 4 kb in length and is interrupted by a subgroup IB intron (1267 base-pairs (bp) in length) and a subgroup IA intron (1992 bp in length). This group IA intron has a long open reading frame (ORF; 472 amino acid residues) discontinuous with the upstream exon sequence. A putative alternative splice site is present, which brings the ORF into phase with the 5' exon sequence. The 5'- and 3'-flanking regions of the COII gene contain G + C-rich palindromic sequences that resemble similar sequences flanking many Neurospora crassa mitochondrial genes.  相似文献   

12.
In addition to the canonical base-pairs comprising the standard Watson-Crick (C:G and U:A) and wobble U:G conformations, an analysis of the base-pair types and conformations in the rRNAs in the high-resolution crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits has identified a wide variety of non-canonical base-pair types and conformations. However, the existing nomenclatures do not describe all of the observed non-canonical conformations or describe them with some ambiguity. Thus, a standardized system is required to classify all of these non-canonical conformations appropriately. Here, we propose a new, simple and systematic nomenclature that unambiguously classifies base-pair conformations occurring in base-pairs, base-triples and base-quadruples that are associated with secondary and tertiary interactions. This system is based on the topological arrangement of the two bases and glycosidic bonds in a given base-pair. Base-pairs in the internal positions of regular secondary structure helices usually form with canonical base-pair groups (C:G, U:A, and U:G) and canonical conformations (C:G WC, U:A WC, and U:G Wb). In contrast, non-helical base-pairs outside of regular structure helices usually have non-canonical base-pair groups and conformations. In addition, many non-helical base-pairs are involved in RNA motifs that form a defined set of non-canonical conformations. Thus, each rare non-canonical conformation may be functionally and structurally important. Finally, the topology-based isostericity of base-pair conformations can rationalize base-pair exchanges in the evolution of RNA molecules.  相似文献   

13.
The dynamic behavior of a palindromic oligonucleotide (C-G-T-A-C-T-A-G-T-T-A-A-C-T-A-G-T-A-C-G) representative of the operator sequence and containing the Pribnow box of the trp operon of Escherichia coli was investigated. The resonances of the imino protons and of the H2 protons of the adenosine residues were all assigned. The opening rate constants of the base-pairs were calculated by monitoring the exchange rate of the observable imino protons (nine out of ten), using selective temperature (T1) measurements, which avoid the complication of cross-relaxation and spin diffusion. These measurements have to be performed in conditions where the exchange process is much faster than the opening and closing of the base-pairs, so that the observed exchange rate is equal to the opening rate. It is shown that the catalysis of the exchange process by phosphate dianions is not very efficient (kB approximately equal to 7 X 10(4) M-1 S-1). Hence, in phosphate buffer, the necessary opening-rate limiting condition is met only at high pH values (approximately equal to 9.5) where efficient catalysis by OH- takes place, or at very high buffer concentration. While G X C base-pairs show very little exchange, acting in the sequence as molecular "staples", the A X T base-pairs that are protected from the fraying have very different opening and closing rates, depending on the sequence. Although it seems possible that the opening process could occur at the base-pair level, it is localized at most to two base-pairs in that particular sequence. The activation energies for the opening process of all non-fraying base-pairs are very similar (19 +/- 1 kcal mol-1; 1 cal = 4.184 J), and the differences in the opening rates are essentially due to differences in the activation entropies. With regard to the role of this sequence in the promoter, it is observed that the end of the Pribnow box exchanges relatively easily, and that the activation parameters for the "breathing" process and for the isomerization step of the promoter--RNA polymerase are not very different.  相似文献   

14.
The structure of d(CGCGm4CG) were m4C = N4-methylcytosine has been determined by crystallographic methods. The crystals are multifaced prisms, with orthorhombic space group P2(1)2(1)2(1) and unit cell dimensions of a = 17.98, b = 30.77 and c = 44.75A. The asymmetric unit consists of one duplex of hexanucleotide and 49 waters. The R-factor is 0.189 for 1495 reflections with F > or = sigma(F) to a resolution limit of 1.8A. The double helix has a Z-DNA type structure which appears to be intermediate in structure to the two previously characterised structure types for Z-DNA hexamers. The two m4C.G base-pairs adopt structures that are very similar to those of the equivalent base-pairs in the structure of the native sequence d(CGCGCG) except for the presence of the methyl groups which are trans to the N3 atoms of their parent nucleotides and protrude into the solvent region. The introduction of the modified base-pairs into the d(CGCGCG) duplex appears to have a minimal effect on the overall base-pair morphology of the Z-DNA duplex.  相似文献   

15.
Single crystal X-ray diffraction techniques have been used to determine the structure of the DNA octamer d(G-G-G-G-C-T-C-C) at a resolution of 2.25 A. The asymmetric unit consists of two strands coiled about each other to produce an A-type DNA helix. The double helix contains six G . C Watson-Crick base-pairs and two G . T mismatched base-pairs. The mismatches adopt a "wobble" type structure in which both bases retain their major tautomer forms. The double helix is able to accommodate this G . T pairing with little distortion of the overall helical conformation. Crystals of this octamer melt at a substantially lower temperature than do those of a related octamer also containing two G . T base-pairs. We attribute this destabilization to disruption of the hydration network around the mismatch site combined with changes in intermolecular packing. Full details are given of conformational parameters, base stacking, intermolecular contacts and hydration involving 52 solvent molecules.  相似文献   

16.
Single-residue d(Pu1NPu2) (Pu1.Pu2=G.A, G.G or A.A) hairpin loops can be stably closed by sheared purine.purine pairs. These special motifs have been found in several important biological systems. We now extend these loop-closing base-pairs to a sheared purine. pyrimidine (A.C) pair at a neutral pH condition. High-resolution NMR spectroscopy, distance geometry, and molecular dynamics methods were used to study d(GTACANCGTAC) oligomers. Numerous idiosyncratic nuclear Overhauser enhancements, especially those across the A.C base-pair between C4NH2left and right arrow AH1', C4NH2left and right arrow AH2, and CH5left and right arrow AH2 proton pairs, clearly define the novel sheared nature of the closing A.C base-pair. This novel base-pair is possibly present in several biological systems and in two single-stranded DNA aptamers selected from oligonucleotide libraries.  相似文献   

17.
The anticancer activity of cisplatin derives from its ability to bind and cross-link DNA, with the major adduct being the 1,2-d(GpG) intrastrand cross-link. Here, the consequences of this adduct on the conformation, thermal stability, and energetics of duplex DNA are assessed, and the modulation of these parameters by the sequence context of the adduct is evaluated. The properties of a family of 15-mer DNA duplexes containing a single 1,2-d(GpG) cis-?Pt(NH(3))(2)?(2+) intrastrand cross-link are probed in different sequence contexts where the flanking base-pairs are systematically varied from T.A to C.G to A.T. By using a combination of spectroscopic and calorimetric techniques, the structural, thermal, and thermodynamic properties of each duplex, both with and without the cross-link, are characterized. Circular dichroism spectroscopic data reveal that the cross-link alters the structure of the host duplex in a manner consistent with a shift from a B-like to an A-like conformation. Thermal denaturation data reveal that the cross-link induces substantial thermal and thermodynamic destabilization of the host duplex. Significantly, the magnitudes of these cross-link-induced effects on duplex structure, thermal stability, and energetics are influenced by the bases that flank the adduct. The presence of flanking A.T base-pairs, relative to T.A or C.G base-pairs, enhances the extent of cross-link-induced alteration to an A-like conformation and dampens the extent of cross-link-induced duplex destabilization. These results are discussed in terms of available structural data, and in terms of the selective recognition of cisplatin-DNA adducts by HMG-domain proteins.  相似文献   

18.
The nucleotide sequences of two distinct regions of mitochrondrial DNA of Saccharomyces cerevisiae are reported. The regions studied have a high content of G + C (45%) and contain closely spaced Hpa II and Hae III restriction sites. Both regions have sequences that are homologous over a lenght of 47 base-pairs. In addition, the two regions are highly palindromic. These data support certain aspects of the organization of mitochondrial DNA proposed by Prunell and Bernardi (Prunell, A., and Bernardi, G. (1977) J. Mol. Biol. 110, 53--74).  相似文献   

19.
Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes which are stabilized by the formation of G.A pairs. Three base pairings are known to occur between adenine and guanine: AH+ (anti).G(syn), A(anti).G(anti) and A(syn).G(anti). Protonation of the adenine residues is not involved in the stabilization of this structure, since it is observed at any pH value from 8.3 to 4.5; at pH < or = 4.0 antiparallel stranded d(GA.GA) DNA is destabilized. The results reported in this paper strongly suggest that antiparallel stranded d(GA.GA) homoduplexes are stabilized by the formation of alternating A(anti).G(anti) and G(anti).A(syn) pairs. In this structure, all guanine residues are in the anti conformation with their N7 position freely accessible to DMS methylation. On the other hand, adenines in one strand adopt the anti conformation, with their N7 position also free for reaction, while those of the opposite strand are in the syn conformation, with their N7 position hydrogen bonded to the guanine N1 group of the opposite strand. A regular right-handed helix can be generated using alternating G(anti).A(syn) and A(anti).G(anti) pairs.  相似文献   

20.
Exocyclic DNA adducts are formed from metabolites of chemical carcinogens and have also been detected as endogenous lesions in human DNA. The exocyclic adduct 3,N(4)-etheno-2'-deoxycytidine (epsilon dC), positioned opposite deoxyguanosine in the B-form duplex of the dodecanucleotide d(CGCGAATTepsilonCGCG), has been crystallographically characterized at 1.8A resolution. This self-complementary oligomer crystallizes in space group P3(2)12, containing a single strand in the asymmetric unit. The crystal structure was solved by isomorphous replacement with the corresponding unmodified dodecamer structure. Exposure of both structures to identical crystal packing forces allows a detailed investigation of the influence of the exocyclic base adduct on the overall helical structure and local geometry. Structural changes are limited to the epsilon C:G and adjacent T:A and G:C base-pairs. The standard Watson-Crick base-pairing scheme, retained in the T:A and G:C base-pairs, is blocked by the etheno bridge in the epsilon C:G pair. In its place, a hydrogen bond involving O2 of epsilon C and N1 of G is present. Comparison with an epsilon dC-containing NMR structure confirms the general conformation reported for epsilon C:G, including the hydrogen bonding features. Superposition with the crystal structure of a DNA duplex containing a T:G wobble pair shows similar structural changes imposed by both mismatches. Evaluation of the hydration shell of the duplex with bond valence calculations reveals two sodium ions in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号