首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L (leukocyte)-selectin (CD62L) and CD44 are major adhesion receptors that support the rolling of leukocytes on endothelium, the first step of leukocyte entry into inflamed tissue. The specific contribution of L-selectin or CD44 to the regulation of cell traffic to joints in arthritis has not been investigated. We used CD44-deficient, L-selectin-deficient, and CD44/L-selectin double knockout mice to determine the requirement for these receptors for inflammatory cell recruitment during Ag-induced arthritis. Intraperitoneal immunization resulted in similar activation status and Ag-specific responses in wild-type and gene-targeted mice. However, extravasation of neutrophil granulocytes, but not the emigration of T cells, into the knee joints after intra-articular Ag injection was significantly delayed in L-selectin-deficient and double knockout mice. Intravital videomicroscopy on the synovial microcirculation revealed enhanced leukocyte rolling and diminished adherence in mice lacking either CD44 or L-selectin, but CD44 deficiency had no significant effect on the recruitment of L-selectin-null cells. Compared with wild-type leukocytes, expression of L-selectin was down-regulated in CD44-deficient cells in the spleen, peripheral blood, and inflamed joints, suggesting that reduced expression of L-selectin, rather than the lack of CD44, could be responsible for the delayed influx of granulocytes into the joints of CD44-deficient mice. In conclusion, there is a greater requirement for L-selectin than for CD44 for neutrophil extravasation during the early phase of Ag-induced arthritis.  相似文献   

2.
To study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved. The leukocyte recruitment responses in chimeric mice with TLR4-positive microglia and endothelium, but TLR4-negative leukocytes, were comparable to normal wild-type mice, suggesting either endothelium or microglia play a crucial role in the induction of leukocyte recruitment. LPS injection induced both microglial and endothelial activation in the CNS. Furthermore, minocycline, an effective inhibitor of microglial activation, completely blocked the rolling and adhesion of leukocytes in the brain and blocked TNF-alpha production in response to LPS in vivo. Minocycline did not affect activation of endothelium by LPS in vitro. TNFR p55/p75 double knockout mice also exhibited significant reductions in both rolling and adhesion in response to LPS, indicating TNF-alpha signaling is critical for the leukocyte recruitment. Our results identify a TLR4 detection system within the blood-brain barrier. The microglia play the role of sentinel cells detecting LPS thereby inducing endothelial activation and leading to efficient leukocyte recruitment to the CNS.  相似文献   

3.
Selectin family members largely mediate initial tethering and rolling of leukocytes on vascular endothelium, whereas integrin and Ig family members are essential for leukocyte firm adhesion. To quantify functional synergy between L-selectin and Ig family members during leukocyte rolling, the EA.hy926 human vascular endothelial line was transfected with either fucosyltransferase VII (926-FtVII) cDNA to generate L-selectin ligands alone or together with ICAM-1 cDNA (926-FtVII/ICAM-1). The ability of transfected 926 cells to support human leukocyte interactions was assessed in vitro using parallel plate flow chamber assays. Lymphocyte rolling on 926-FtVII cells was increased by approximately 70% when ICAM-1 was expressed at physiological levels. Although initial tether formation was similar for both cell types, lymphocyte rolling was 26% slower on 926-FtVII/ICAM-1 cells. Pretreatment of lymphocytes with an anti-CD18 mAb eliminated the increase in rolling, and all rolling was blocked by anti-L-selectin mAb. In addition, rolling velocities of lymphocytes from CD18-hypomorphic mice were 48% faster on 926-FtVII/ICAM-1 cells, with a similar reduction in rolling frequency relative to wild-type lymphocytes. CD18-hypomorphic lymphocytes also showed an approximately 40% decrease in migration to peripheral and mesenteric lymph nodes during in vivo migration assays compared with wild-type lymphocytes. Likewise, wild-type lymphocyte migration to peripheral lymph nodes was reduced by approximately 50% in ICAM-1(-/-) recipient mice. Similar to human lymphocytes, human neutrophils showed enhanced rolling interactions on 926-FtVII/ICAM-1 cells, but also firmly adhered. Thus, in addition to mediating leukocyte firm adhesion, CD18 integrin/ICAM-1 interactions regulate leukocyte rolling velocities and thereby optimize L-selectin-mediated leukocyte rolling.  相似文献   

4.
Leukocyte infiltration in atherosclerosis has been extensively investigated by using histological techniques on fixed tissues. In this study, intravital microscopic observations of leukocyte recruitment in the aorta of atherosclerotic mice were performed. Interactions between leukocytes and atherosclerotic endothelium were highly transient, thereby limiting the ability for rolling leukocytes to firmly adhere. Leukocyte rolling was abolished by function inhibition of P-selectin (P<0.001, n=8), whereas antibody blockage of E-selectin (n=10) decreased rolling leukocyte flux to 51 +/- 9.9% (mean+/-SE, P<0.01) and increased leukocyte rolling velocity to 162 +/- 18% (P<0.01) of pretreatment values. Notably, function inhibition of the integrin alpha(4) subunit (n=5) had no effect on rolling flux (107+/-25%, P=0.782) or rolling velocity (89+/-6.1%, P=0.147), despite endothelial expression of vascular cell adhesion molecule 1 (VCAM-1). Leukocytes interacting with atherosclerotic endothelium were predominantly neutrophils, because treatment with antineutrophil serum decreased rolling and neutrophil counts in peripheral blood to the same extent. In conclusion, we present the first direct observations of atherosclerosis in vivo. We show that transient dynamics of leukocyte-endothelium interactions are important regulators of arterial leukocyte recruitment and that leukocyte rolling in atherosclerosis is critically dependent on the endothelial selectins. This experimental technique and the data presented introduce a novel perspective for the study of pathophysiological events involved in large-vessel disease.  相似文献   

5.
To study selectin-independent leukocyte recruitment and the role of intercellular adhesion molecule-1 (ICAM-1), we generated mice lacking all three selectins and ICAM-1 (E/P/L/I-/-) by bone marrow transplantation. These mice were viable and appeared healthy under vivarium conditions, although they showed a 97% reduction in leukocyte rolling, a 63% reduction in leukocyte firm adhesion, and a 99% reduction of neutrophil recruitment in a thioglycollate-induced model of peritonitis at 4 and 24 h. Mononuclear cell recruitment was almost unaffected. All residual leukocyte rolling and most leukocyte adhesion in these mice depended on alpha(4)-integrins, but a small number of leukocytes (6% of wild-type control) still became adherent in the absence of all known rolling mechanisms (E-, P-, L-selectin and alpha(4)-integrins). A striking similarity of leukocyte adhesion efficiency in E/P/L-/- and E/P/I-/- mice suggests a pathway in which leukocyte rolling through L-selectin requires ICAM-1 for adhesion and recruitment. Comparison of our data with mice lacking individual or other combinations of adhesion molecules reveal that elimination of more adhesion molecules further reduces leukocyte recruitment but the effect is less than additive.  相似文献   

6.
During Gram-negative sepsis and endotoxemia, CD14 is essential for the recognition of LPS by the TLR4 complex and subsequent generation of systemic inflammation. However, CD14-independent responses to LPS have been reported in vitro and in vivo in selected tissues including the skin. As the liver is a key target organ for neutrophil sequestration and inflammatory pathology during sepsis and endotoxemia, we investigated the role of CD14 in the recruitment of neutrophils into the liver in a mouse model of endotoxemia. Using dynamic in vivo imaging of the liver, we observed that neutrophil recruitment within the sinusoids and post-sinusoidal venules occurred equivalently between LPS-treated wild-type and CD14-knockout mice. Neutrophil recruitment within the liver was completely independent of CD14 regardless of whether it was expressed on cells of hematopoietic or nonhematopoietic origin or in serum as soluble CD14. Whereas CD14 expression was essential for activation of circulating neutrophils and for the development of LPS-induced systemic inflammation (pulmonary neutrophil sequestration, leukopenia, and increased serum proinflammatory cytokine levels), deficiency of CD14 did not limit the adhesion strength of neutrophils in vitro. Furthermore, wild-type and CD14-knockout mice displayed identical deposition of serum-derived hyaluronan-associated protein within liver sinusoids in response to LPS, indicating that the sinusoid-specific CD44/hyaluronan/serum-derived hyaluronan-associated protein-dependent pathway of neutrophil adhesion is activated independently of CD14. Therefore, the liver microcirculation possesses a unique CD14-independent mechanism of LPS detection and activation of neutrophil recruitment.  相似文献   

7.
L-selectin has been shown to be important in mediating leukocyte recruitment during inflammatory responses. Although there are numerous in vitro studies demonstrating that engagement of L-selectin leads to the activation of several signaling pathways potentially contributing to subsequent adhesion, emigration, or even migration through the interstitium, whether this actually induces cellular events in vivo is completely unknown. Therefore, we used intravital microscopy to visualize the role of L-selectin in downstream leukocyte adhesion, emigration, and interstitial migration events in wild-type and L-selectin-deficient (L-selectin(-/-)) mice. The cremaster muscle was superfused with the chemotactic inflammatory mediators platelet-activating factor or KC. Leukocyte rolling, adhesion, and emigration in postcapillary venules were examined, and the migration of emigrated leukocytes was recorded continuously using time-lapse videomicroscopy. Platelet-activating factor increased leukocyte adhesion to a similar level in both wild-type and L-selectin(-/-) mice. In contrast, both the number of emigrated leukocytes and the distance of extravascular migration were significantly reduced in L-selectin(-/-) mice. A similar pattern was observed in response to the superfusion of KC. Because superfusion of these mediators induced chemokinesis, we developed a new in vivo chemotaxis assay using slow release of KC from an agarose gel positioned 350 microm from a postcapillary venule. These experiments showed that L-selectin(-/-) leukocytes were also severely impaired in their ability to respond to a directional cue. These findings indicate that L-selectin is important in enabling leukocytes to respond effectively to chemotactic stimuli in inflamed tissues.  相似文献   

8.
The group IV cytoplasmic protein-tyrosine kinase Fer has been linked to cellular signaling responses to many different stimuli, including growth factors and cytokines. However, the biological relevance of Fer activation in vivo has not been demonstrated to date. Recently, we generated a transgenic mouse line in which Fer protein is expressed but lacks catalytic activity. Homozygous mutant mice were viable and fertile, and showed no overt defects. In this study, we used intravital microscopy to examine the role of Fer kinase in leukocyte recruitment (rolling adhesion and emigration) in response to LPS challenge in skeletal muscle microcirculation. In addition, we measured vascular permeability changes (FITC-albumin leakage, venular-to-interstitial space) in response to Ag to examine general endothelial cell function. Local administration of LPS induced decreased leukocyte rolling velocity and increased leukocyte adhesion and emigration in wild-type mice. LPS-induced changes in leukocyte rolling velocity and rolling flux were not significantly different in Fer mutants. However, LPS-induced leukocyte adhesion (23 +/- 3 vs 11 +/- 3 cells/100 microm) and emigration (100 +/- 5 vs 28 +/- 7 cells/field) were significantly elevated in Fer-mutant mice relative to wild-type mice, respectively, suggesting an essential role for the Fer kinase in regulating inflammation-induced leukocyte emigration. Vascular permeability increases in response to Ag were similar between the two groups, indicating that the ability of endothelial cells to retract is intact in the absence of Fer kinase. These data provide the first evidence for a biological role for Fer in regulation of leukocyte recruitment during the innate immune response.  相似文献   

9.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

10.
Proteoglycan (PG)-induced arthritis, a murine model of rheumatoid arthritis, is characterized by autoimmunity against mouse cartilage PG and chronic joint inflammation. L-selectin (CD62L) and CD44 are major adhesion molecules on leukocytes that regulate their homing to lymph nodes and entry into inflamed tissues. In the present study, we studied the requirement for CD44 and CD62L expression for mediating lymphocyte homing, thus permitting the development of autoimmunity vs mediating the entry of leukocytes into the joints, thus allowing inflammation in PG-induced arthritis. We immunized wild-type, CD44 knockout (KO), CD62L KO, and double (CD44/CD62L) KO BALB/c mice with PG and monitored the effects of gene deficiencies on PG-specific immunity, arthritis severity, leukocyte trafficking, and the ability of lymphocytes to adoptively transfer disease to syngeneic SCID mice. Single and double KO mice demonstrated reduced PG-specific spleen cell proliferation, but the production of Th cytokines and autoantibodies was comparable in KO and wild-type mice. KO leukocytes had reduced ability to adhere tightly to the synovial endothelium in arthritic joints. This diminished leukocyte adhesion correlated with the magnitude of granulocyte (neutrophil) influx and the severity of inflammation, which were both reduced in the joints of KO mice. However, transfer of spleen cells from mildly arthritic KO donors to SCID hosts resulted in development of severe arthritis. Our results indicate that CD44 and CD62L expression in the cells of the innate immune system (granulocytes) is important for their efficient influx into the joints and also suggest that granulocytes play a crucial role in arthritis progression.  相似文献   

11.
Protein kinase C (PKC)-θ is involved in T cell activation via regulating the avidity of the β(2) integrin LFA-1 in the immunological synapse. LFA-1 also mediates leukocyte adhesion. To investigate the role of PKC-θ in neutrophil adhesion, we performed intravital microscopy in cremaster venules of mice reconstituted with bone marrow from LysM-GFP(+) (wild-type [WT]) and PKC-θ gene-deficient (Prkcq(-/-)) mice. Following stimulation with CXCL1, both WT and Prkcq(-/-) cells became adherent. Although most WT neutrophils remained adherent for at least 180 s, 50% of Prkcq(-/-) neutrophils were detached after 105 s and most by 180 s. Upon CXCL1 injection, rolling of all WT neutrophils stopped for 90 s, but rolling of Prkcq(-/-) neutrophils started 30 s after CXCL1 stimulation. A similar neutrophil adhesion defect was seen in vitro, and spreading of Prkcq(-/-) neutrophils was delayed. Prkcq(-/-) neutrophil recruitment was impaired in fMLP-induced transmigration into the cremaster muscle, thioglycollate-induced peritonitis, and LPS-induced lung injury. We conclude that PKC-θ mediates integrin-dependent neutrophil functions and is required to sustain neutrophil adhesion in postcapillary venules in vivo. These findings suggest that the role of PKC-θ in outside-in signaling following engagement of neutrophil integrins is relevant for inflammation in vivo.  相似文献   

12.
Selectins play a critical role in initiating leukocyte binding to vascular endothelium. In addition, in vitro experiments have shown that neutrophils use L-selectin to roll on adherent neutrophils, suggesting that they express a nonvascular L-selectin ligand. Using a L- selectin/IgM heavy chain (mu) chimeric protein as an immunocytological probe, we show here that L-selectin can bind to neutrophils, monocytes, CD34+ hematopoietic progenitors, and HL-60 and KG-1 myeloid cells. The interaction between L-selectin and leukocytes was protease sensitive and calcium dependent, and abolished by cell treatment with neuraminidase, chlorate, or O-sialoglycoprotein endopeptidase. These results revealed common features between leukocyte L-selectin ligand and the mucin-like P-selectin glycoprotein ligand 1 (PSGL-1), which mediates neutrophil rolling on P- and E-selectin. The possibility that PSGL-1 could be a ligand for L-selectin was further supported by the ability of P-selectin/mu chimera to inhibit L-selectin/mu binding to leukocytes and by the complete inhibition of both selectin interactions with myeloid cells treated with mocarhagin, a cobra venom metalloproteinase that cleaves the amino terminus of PSGL-1 at Tyr-51. Finally, the abrogation of L- and P-selectin binding to myeloid cells treated with a polyclonal antibody, raised against a peptide corresponding to the amino acid residues 42-56 of PSGL-1, indicated that L- and P-selectin interact with a domain located at the amino- terminal end of PSGL-1. The ability of the anti-PSGL-1 mAb PL-1 to inhibit L- and P-selectin binding to KG-1 cells further supported that possibility. Thus, apart from being involved in neutrophil rolling on P- and E-selectin, PSGL-1 also plays a critical role in mediating neutrophil attachment to adherent neutrophils. Interaction between L- selectin and PSGL-1 may be of major importance for increasing leukocyte recruitment at inflammatory sites.  相似文献   

13.
At sites of inflammation, endothelial adhesion molecules bind leukocytes and transmit signals required for transendothelial migration (TEM). We previously reported that adhesive interactions between endothelial cell CD47 and leukocyte signal regulatory protein γ (SIRPγ) regulate human T cell TEM. The role of endothelial CD47 in T cell TEM in vivo, however, has not been explored. In this study, CD47(-/-) mice showed reduced recruitment of blood T cells as well as neutrophils and monocytes in a dermal air pouch model of TNF-α-induced inflammation. Reconstitution of CD47(-/-) mice with wild-type bone marrow cells did not restore leukocyte recruitment to the air pouch, indicating a role for endothelial CD47. The defect in leukocyte TEM in the CD47(-/-) endothelium was corroborated by intravital microscopy of inflamed cremaster muscle microcirculation in bone marrow chimera mice. In an in vitro human system, CD47 on both HUVEC and T cells was required for TEM. Although previous studies showed CD47-dependent signaling required G(αi)-coupled pathways, this was not the case for endothelial CD47 because pertussis toxin, which inactivates G(αi), had no inhibitory effect, whereas G(αi) was required by the T cell for TEM. We next investigated the endothelial CD47-dependent signaling events that accompany leukocyte TEM. Ab-induced cross-linking of CD47 revealed robust actin cytoskeleton reorganization and Src- and Pyk-2-kinase dependent tyrosine phosphorylation of the vascular endothelial-cadherin cytoplasmic tail. This signaling was pertussis toxin insensitive, suggesting that endothelial CD47 signaling is independent of G(αi). These findings suggest that engagement of endothelial CD47 by its ligands triggers outside-in signals in endothelium that facilitate leukocyte TEM.  相似文献   

14.
Platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31), expressed on the surfaces of leukocytes and concentrated in the junctions between endothelial cells plays an important role in transendothelial migration of neutrophils and monocytes. Soluble recombinant PECAM-IgG injected i.v. into mice blocks acute leukocyte emigration by 80%. To study the role of PECAM in models of chronic inflammation, we generated transgenic mice constitutively expressing soluble full-length murine PECAM as an IgG chimera. Three founder lines expressed this transgene and constitutively secreted murine PECAM-IgG into the plasma where it was maintained at characteristic concentrations for each line. All mice had similar hematologic profiles to wild-type littermates and were healthy when maintained in the standard laboratory animal facility. Both the leukocytes and the endothelium of mice of all transgenic lines expressed the same levels of endogenous PECAM-1 as wild-type littermates. Similarly, there were no detectable differences in the expression of several other common leukocyte and endothelial cell adhesion molecules. Mice that produced moderate (10-20 microg/ml) concentrations of PECAM-IgG demonstrated a severely blunted acute inflammatory response, despite mobilizing appropriate numbers of circulating leukocytes. Surprisingly, mice that constitutively produced high (400-1,000 microg/ml) concentrations of PECAM-IgG were unresponsive to its anti-inflammatory effects. This is the first demonstration that a soluble form of a cell adhesion molecule can be stably expressed and retain efficacy in vivo over prolonged periods. This approach is applicable to many other extracellular molecules. However, the plasma concentrations of such constitutively produced inhibitors may greatly influence the resulting phenotype.  相似文献   

15.
Although L-selectin mediates lymphocyte attachment to endothelial venules of peripheral lymph nodes, its role in leukocyte recruitment into tissues following Ag challenge is less well established. The objective of this study was to systematically examine the role of L-selectin in leukocyte rolling in the peripheral microvasculature during the first 24 h of an immune response. A type I hypersensitivity response was elicited in wild-type (C57BL/6) and L-selectin-deficient mice by systemic (i.p.) sensitization and intrascrotal challenge with chicken egg OVA. The cremaster microcirculation was observed in untreated and sensitized mice 4, 8, and 24 h post-Ag challenge by intravital microscopy. Leukocyte recruitment in L-selectin-deficient mice and wild-type mice treated with an L-selectin function-blocking mAb was examined at each time point. Ag challenge induced a significant increase in leukocyte rolling (60 cells/min/venule to approximately 300 cells/min/venule) in wild-type mice at 4-24 h. This response was reduced by approximately 60-70% in L-selectin-deficient mice and in wild-type mice treated with an L-selectin-blocking mAb. P-selectin blockade by Ab completely inhibited leukocyte rolling at 4-24 h in wild-type animals and also blocked the residual rolling seen in L-selectin-deficient mice. Blocking E-selectin function had no effect on leukocyte rolling flux at any time point in wild-type or L-selectin-deficient mice. Despite reduced rolling, leukocyte adhesion and emigration were not measurably reduced in the L-selectin-deficient mice in this vascular bed. In conclusion, leukocyte rolling is L-selectin-dependent post-Ag challenge with L-selectin and P-selectin sharing overlapping functions.  相似文献   

16.
Contact sensitivity (CS) is one of the primary in vivo models of T cell-mediated inflammation. The presence of CS-initiating CD4 T lymphocytes at the time of challenge is essential for transfer and full development of the late phase CS inflammatory response. From this observation investigators have speculated that early recruitment of CD4 T cells to the site of challenge must occur. Moreover, there must be rapid synthesis/release and disappearance of an important mediator during the first hours after hapten challenge. Using spinning disk confocal microscopy, we observed the very early effector events of the immune response. Simultaneous, real-time visualization of predominant neutrophil and extremely rare CD4 T cell trafficking in the challenged skin vasculature was noted (one rolling CD4 T cell for every 10-18 rolling and adherent neutrophils). We demonstrate that neutrophil adhesion during the early CS response was reduced in C5a receptor-deficient (C5aR-/-) mice or leukotriene B4 receptor antagonist-treated mice, whereas CD4 T cell recruitment was only inhibited in C5aR-/- mice. In line with these observations, leukocyte infiltration and the associated tissue damage were significantly reduced in C5aR-/- mice but not in leukotriene B4 receptor antagonist-treated wild-type mice 24 h after challenge. C5a receptor expression on T cells and not on tissue resident cells was important for the development of a CS response. Thus, by using spinning disk confocal microscopy we visualized the early events of an adaptive immune response and identified the rare but essential recruitment of CD4 T cells via the complement pathway.  相似文献   

17.
PI3K plays a fundamental role in regulating neutrophil recruitment into sites of inflammation but the role of the different isoforms of PI3K remains unclear. In this study, we evaluated the role of PI3Kgamma and PI3Kdelta for neutrophil influx induced by the exogenous administration or the endogenous generation of the chemokine CXCL1. Administration of CXCL1 in PI3Kgamma(-/-) or wild-type (WT) mice induced similar increases in leukocyte rolling, adhesion, and emigration in the cremaster muscle when examined by intravital microscopy. The induction of neutrophil recruitment into the pleural cavity or the tibia-femoral joint induced by the injection of CXCL1 was not significantly different in PI3Kgamma(-/-) or WT mice. Neutrophil influx was not altered by treatment of WT mice with a specific PI3Kdelta inhibitor, IC87114, or a specific PI3Kgamma inhibitor, AS605240. The administration of IC87114 prevented CXCL1-induced neutrophil recruitment only in presence of the PI3Kgamma inhibitor or in PI3Kgamma(-/-) mice. Ag challenge of immunized mice induced CXCR2-dependent neutrophil recruitment that was inhibited by wortmannin or by blockade of and PI3Kdelta in PI3Kgamma(-/-) mice. Neutrophil recruitment to bronchoalveolar lavage induced by exogenously added or endogenous production of CXCL1 was prevented in PI3Kgamma(-/-) mice. The accumulation of the neutrophils in lung tissues was significantly inhibited only in PI3Kgamma(-/-) mice treated with IC87114. Neutrophil recruitment induced by exogenous administration of C5a or fMLP appeared to rely solely on PI3Kgamma. Altogether, our data demonstrate that there is a tissue- and stimulus-dependent role of PI3Kgamma and PI3Kdelta for neutrophil recruitment induced by different chemoattractants in vivo.  相似文献   

18.
Allergic airway inflammation, including asthma, is usually characterized by the predominant recruitment of eosinophils. However, neutrophilia is also prominent during severe exacerbations. Cell surface-expressed glycans play a role in leukocyte trafficking and recruitment during inflammation. Here, the involvement of UDP-N-acetylglucosamine:α-6-D-mannoside β1,6-N-acetylglucosaminyltransferase V (MGAT5)-modified N-glycans in eosinophil and neutrophil recruitment during allergic airway inflammation was investigated. Allergen-challenged Mgat5-deficient (Mgat5(-/-)) mice exhibited significantly attenuated airway eosinophilia and inflammation (decreased Th2 cytokines, mucus production) compared with WT counterparts, attributable to decreased rolling, adhesion, and survival of Mgat5(-/-) eosinophils. Interestingly, allergen-challenged Mgat5(-/-) mice developed airway neutrophilia and increased airway reactivity with persistent elevated levels of proinflammatory cytokines (IL-17A, TNFα, IFNγ)). This increased neutrophil recruitment was also observed in LPS- and thioglycollate (TG)-induced inflammation in Mgat5(-/-) mice. Furthermore, there was significantly increased recruitment of infused Mgat5(-/-) neutrophils compared with WT neutrophils in the peritoneal cavity of TG-exposed WT mice. Mgat5(-/-) neutrophils demonstrated enhanced adhesion to P-selectin as well as increased migration toward keratinocyte-derived chemokine compared with WT neutrophils in vitro along with increased calcium mobilization upon activation and expression of elevated levels of CXCR2, which may contribute to the increased neutrophil recruitment. These data indicate an important role for MGAT5-modified N-glycans in differential regulation of eosinophil and neutrophil recruitment during allergic airway inflammation.  相似文献   

19.
There is controversy in the literature over whether nitric oxide (NO) released during the inflammatory process has a pro- or inhibitory effect on neutrophil migration. The aim of the present investigation was to clarify this situation. Treatment of rats with non-selective, NG-nitro-L-arginine (nitro), or selective inducible NO synthase (iNOS), aminoguanidine (amino) inhibitors enhanced neutrophil migration 6h after the administration of low, but not high, doses of carrageenan (Cg) or Escherichia coli endotoxin (LPS). The neutrophil migration induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was also enhanced by nitro or amino treatments. The enhancement of Cg-induced neutrophil migration by NOS inhibitor treatments was reversed by co-treatment with L-arginine, suggesting an involvement of the L-arginine/NOS pathway in the process. The administration of Cg in iNOS deficient (iNOS(-/-)) mice also enhanced the neutrophil migration compared with wild type mice. This enhancement was markedly potentiated by treatment of iNOS(-/-) mice with nitro. Investigating the mechanisms by which NOS inhibitors enhanced the neutrophil migration, it was observed that they promoted an increase in Cg-induced rolling and adhesion of leukocytes to endothelium and blocked the apoptosis of emigrated neutrophils. Similar results were observed in iNOS(-/-) mice, in which these mechanisms were potentiated and reverted by nitro and L-arginine treatments, respectively. In conclusion, these results suggest that during inflammation, NO released by either constitutive NOS (cNOS) or iNOS down-modulates the neutrophil migration. This NO effect seems to be a consequence of decreased rolling and adhesion of the neutrophils on endothelium and also the induction of apoptosis in migrated neutrophils.  相似文献   

20.
Platelets are increasingly recognized as important for inflammation in addition to thrombosis. Platelets promote the adhesion of neutrophils [polymorphonuclear neutrophils (PMNs)] to the endothelium; P-selectin and P-selectin glycoprotein ligand (PSGL)-1 have been suggested to participate in these interactions. Whether platelets also promote PMN transmigration across the endothelium is less clear. We tested the hypothesis that platelets enhance PMN transmigration across the inflamed endothelium and that PSGL-1 is involved. We studied the effects of platelets on PMN transmigration in vivo and in vitro using a well-characterized corneal injury model in C57BL/6 mice and IL-1β-stimulated human umbilical vein endothelial cells (HUVECs) under static and dynamic conditions. In vivo, platelet depletion altered PMN emigration from limbal microvessels after injury, with decreased emigration 6 and 12 h after injury. Both PSGL-1-/- and P-selectin-/- mice, but not Mac-1-/- mice, also had reduced PMN emigration at 12 h after injury relative to wild-type control mice. In the in vitro HUVEC model, platelets enhanced PMN transendothelial migration under static and dynamic conditions independent of firm adhesion. Anti-PSGL-1 antibodies markedly inhibited platelet-PMN aggregates, as assessed by flow cytometry, and attenuated the effect of platelets on PMN transmigration under static conditions without affecting firm adhesion. These data support the notion that platelets enhance neutrophil transmigration across the inflamed endothelium both in vivo and in vitro, via a PSGL-1-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号