首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonporous and mesoporous silica-coated magnetite cluster nanocomposites particles were fabricated with various silica structures in order to develop a desired carrier for the lipase immobilization and subsequent biodiesel production. Lipase from Pseudomonas cepacia was covalently bound to the amino-functionalized particles using glutaraldehyde as a coupling agent. The hybrid systems that were obtained exhibited high stability and easy recovery regardless of the silica structure, following the application of an external magnetic field. The immobilized lipases were then used as the recoverable biocatalyst in a transesterification reaction to convert the soybean oil to biodiesel with methanol. Enzyme immobilization led to higher stabilities and conversion values as compared to what was obtained by the free enzyme. Furthermore, the silica structure had a significant effect on stability and catalytic performance of immobilized enzymes. In examining the reusability of the biocatalysts, the immobilized lipases still retained approximately 55% of their initial conversion capability following 5 times of reuse.  相似文献   

2.
Abstract

Lipase B from Candida antarctica (CALB) immobilized on octyl-agarose (OC) was submitted to coating with polyethylenimine (PEI) and dextran sulfate (DS). Using lowly loaded enzyme preparations, the properties of OC-CALB preparations hardly improved, suggesting too large the distance between enzyme molecules. However, using OC-CALB preparations with maximum loading, CALB stability was greatly improved in different conditions after PEI coating. Moreover, the CALB release from the OC support in the presence of detergents, or during thermal or organic solvent inactivations was greatly reduced after this treatment (PEI plus DS coating). The results pointed that the main positive effect of this coating could be derived from the physical intermolecular crosslinking of the CALB molecules with the polymers that reduce the enzyme desorption from the support. The coating of OC-CALB-PEI with DS only produced a minimal improvement on enzyme performance. Even though the enzyme release was much more difficult after physical crosslinking, all enzyme molecules could be released from the OC support combining an ionic detergent (SDS), high buffer concentration, pH 3 and 45?°C, while using the OC-CALB just 2% SDS at pH 7 and 25?°C was enough to release all enzyme. The support could be reused several cycles. Thus, this strategy permitted to greatly reduce the enzyme desorption during operation and to improve enzyme stability while keeping the enzyme immobilization reversibility.  相似文献   

3.
Enzymatic synthesis of esters using an immobilized lipase   总被引:6,自引:0,他引:6  
Various esters were synthesized in nearly anhydrous hexane from alcohols and carboxylic acids using a lipase from Candida cylindracea. The enzyme was immobilized on a nylon support and protein loadings as high as 10 mg/g were obtained. The activity of the immobilized enzyme was maximum in a range of temperatures from 25 to 37 degrees C. Ethylpropionate was formed from ethanol and propionic acid at a rate of 0.017 mol/h g immobilized protein. Different esters were formed at comparable rates and equilibrium conversions could generally be approached in less than 10 h in a batch reaction system. The immobilized lipase catalyst was quite stable and retained about one third of the initial activity after repeated experiments during the course of 72 days. A stirred tank continuous flow reactor was used successfully for the continuous production of esters.  相似文献   

4.
Polymerization of 1,4-dioxan-2-one was carried out more detailed with immobilized lipase CA as the catalyst. The effect of the enzyme amount, reaction temperature and water content on polymerization was investigated, respectively. Both the conversion of monomer and the Mv of poly(1,4-dioxan-2-one) increased with the increase of enzyme amount, and maximized at 80 °C. At the beginning of polymerization, water molecules act as initiators. As the reaction time increased, linear condensation had gradually became dominant and water was released into the reaction system. Excess water may act as a chain cleavage agent. To obtain poly(1,4-dioxan-2-one) with an ideal molecular weight, polymerization of 1,4-dioxan-2-one was conducted by adding solvent and MS to reaction system, and product with a higher molecular weight (Mv = 58,000) was gained.  相似文献   

5.
The enantiocatalytic performance of immobilized lipase in an emulsion membrane reactor using stable emulsion prepared by membrane emulsification technology was studied. The production of optical pure (S)-naproxen from racemic naproxen methyl ester was used as a model reaction system. The O/W emulsion, containing the substrate in the organic phase, was fed to the enzyme membrane reactor from shell-to-lumen. The enzyme was immobilized in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off. The aqueous phase was able to permeate through the membrane while the microemulsion was retained by the thin selective layer. Therefore, the substrate was kept in the enzyme-loaded membrane while the water-soluble product was continuously removed from the reaction site. The results show that lipase maintained stable activity during the entire operation time (more than 250 h), showing an enantiomeric excess (96 +/- 2%) comparable to the free enzyme (98 +/- 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The results demonstrate that immobilized enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.  相似文献   

6.
Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes   总被引:3,自引:0,他引:3  
Long JJ  Fu YJ  Zu YG  Li J  Wang W  Gu CB  Luo M 《Bioresource technology》2011,102(21):9991-9996
An aqueous enzymatic process assisted by ultrasound extraction (AEP-UE) was applied to the extraction of oil from flaxseed (Linum usitatissimum L.). The highest oil recovery of 68.1% was obtained when ground flaxseed was incubated with 130 U/g of cellulase, pectinase, and hemicellulase for 12 h, at 45 °C and pH 5.0. The IC50 values of oil obtained by AEP-UE and organic solvent extraction (OSE), as measured by DPPH scavenging activity essay, were 2.27 mg/mL and 3.31 mg/mL. The AEP-UE-derived oil had a 1.5% higher content of unsaturated fatty acids than the OSE-derived oil. AEP-UE is therefore a promising environmentally friendly method for large-scale preparation of flaxseed oil.  相似文献   

7.
High activity of glucose oxidase (GOD) enzyme (immobilized in porous silica particles) is desirable for a better glucose biosensor. In this work, effect of pore diameter of two porous hosts on enzyme immobilization, activity and glucose sensing was compared. The hosts were amine functionalized: (i) microporous silica (NH2-MS) and (ii) mesoporous silica (NH2-SBA-15). Based on whether the dimension of GOD is either larger or smaller than the pore diameter, GOD was immobilized on either external or internal surface of NH2-MS and NH2-SBA-15, with loadings of 512.5 and 634 mg/g, respectively. However, GOD in NH2-SBA-15 gave a higher normalized absolute activity (NAA), which led to an amperometric sensor with a larger linear range of 0.4–13.0 mM glucose. In comparison, GOD in NH2-MS had a lower NAA and a smaller linear range of 0.4–3.1 mM. In fact, the present GOD-NH2-SBA-15 electrode based sensor was better than other MS and SBA-15 based electrodes reported in literature. Thus, achieving only a high GOD loading (as in NH2-MS) does not necessarily give a good sensor performance. Instead, a host with a relatively larger pore than enzyme, together with optimized electrode composition ensures the sensor to be functional in both hyper- and hypoglycemic range.  相似文献   

8.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

9.
The presence of high levels of free fatty acids (FFA) in oil is a barrier to one‐step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole‐cell Candida antarctica lipase B‐expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase‐expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.  相似文献   

10.
The influence of the thermodynamic activity of water (a(w))on the synthesis of triolein catalyzed by Mucor miehei lipase was investigated. Its effect on the equilibrium and on the rates of the different reactions present, esteification and mono- and diglyceride isomerization, was evaluated through measurements made in controlled water activity atmosphere. The apparent equilibrium constants were measured from the concentration of the different species as a function of the intial glycerol-to oleic-acid ratio using all the values at once with a multi-response nonlinear regression technique. Rate constants were determined from kinetic measurements and non-linear regression uning the variation of the concentration of all significant species in the system. Except for the synthesis of diolein from monoolein, which shows a maximum for a(w) approximately 0.5, the apparent rate constants of the various reactions are not significantly affected by the value of the water activity. The equilibrium is shifted to-ward the synthesis of triolein for low values of a(w), indicating that in the design of a process for triglyceride synthesis, using M. miehei lipase as a catalyst, the water activity can be lowered to extreme values to favor the synthesis, without any sacrifice on the productivity of the process. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5 h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3 h) and [omim]PF6 (10.6 h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

12.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5?h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3?h) and [omim]PF6 (10.6?h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

13.
Remarkable increases in enzyme catalytic stability resulting from addition of charged water-soluble polymers have recently been reported, suggesting that use of these polymers may be an attractive general strategy for enzyme stabilization. To test the proposed hypothesis that coulombic forces between water-soluble polymers and enzymes are primarily responsible for enzyme stabilization, we examined the catalytic stability and activity of two enzymes in the presence of polymers differing in net charge. All polymers tested increased enzyme lifetimes, regardless of their net charge, suggesting that stabilization of these enzymes by water-soluble polymers is not solely dependent on simple electrostatic interactions between the polymers and enzymes.  相似文献   

14.
《Process Biochemistry》2014,49(8):1304-1313
Pseudomonas cepacia lipase (PCL) was immobilized on ternary blend biodegradable polymer made up of polylactic acid (PLA), chitosan (CH), and polyvinyl alcohol (PVA). Immobilized biocatalyst was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), % water content, protein and lipase activity assay. The lipase activity assay showed enhanced activity of immobilized lipase than crude lipase. Higher half life time (t1/2) and lower deactivation rate constant (Kd) was found for the n-hexane among various tested solvent. Influence of various reaction parameters on enzyme activity were studied in detail. When geraniol (1 mmol) and vinyl acetate (4 mmol) in toluene (3 mL) were reacted with 50 mg immobilized lipase at 55 °C; then 99% geraniol was converted to geranyl acetate after 3 h. Various kinetic parameters such as rmax, Ki(A), Km(A), Km(B) were determined using non-linear regression analysis for ternary-complex and Bi–Bi ping-pong mechanism. The kinetic study showed that reaction followed ternary-complex mechanism with inhibition by geraniol. Activation energy (Ea) was found to be lower for immobilized lipase (13.76 kCal/mol) than crude lipase (19.9 kCal/mol) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 4 fold increased catalytic activity than crude lipase and recycled five times.  相似文献   

15.
Based on the idea that proteins can be stabilized by a decrease in the thermodynamically unfavorable contact of the hydrophobic surface clusters with water, alpha-chymotrypsin (CT) was acylated with carboxylic acid anhydrides or re-ductively alkylated with aliphatic aldehydes. Modification of CT with hydrophilic reagents leads to 100-1000-fold increase in stability against the irreversible thermoinactivation. The correlation holds: the greater the hydrophilization increment brought about by the modification, the higher is the protein thermostability. After some limiting value, however, a further increase in hydrophilicity does not change thermostability.It follows from the dependence of the thermoinactivation rate constants on temperature that for hydrophilized CT there is the conformational transition at 55-65 degrees C into an unfolded state in which inactivation is much slower than that of the low-temperature conformation. The thermodynamic analysis and fluorescent spectral data confirm that the slow inactivation of hydrophilized CT at high temperatures proceeds via a chemical mechanism rather than Incorrect refolding operative for both the native and low-temperature form of the modified enzyme. Hence, the hydrophilization stabilizes the unfolded high-temperature conformation by eliminating the incorrect refolding. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols, and is a candidate of materials for production of biodiesel fuel. A mixture (acid oil model) of refined FFAs and vegetable oil was recently reported to be converted to fatty acid methyl esters (FAMEs) at >98% conversion by a two-step reaction system comprising methyl esterification of FFAs and methanolysis of acylglycerols using immobilized Candida antarctica lipase. The two-step system was thus applied to conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel. Under similar conditions that were determined by using acid oil model, however, the lipase was unstable and was not durable for repeated use. The inactivation of the lipase was successfully avoided by addition of excess amounts of methanol (MeOH) in the first-step reaction, and by addition of vegetable oil and glycerol in the second-step reaction. Hence, the first-step reaction was conducted by shaking a mixture of 66 wt% acid oil (77.9 wt% FFAs, 10.8 wt% acylglycerols) and 34 wt% MeOH with 1 wt% immobilized lipase, to convert FFAs to their methyl esters. The second-step reaction was performed by shaking a mixture of 52.3 wt% dehydrated first-step product (79.7 wt% FAMEs, 9.7 wt% acylglycerols), 42.2 wt% rapeseed oil, and 5.5 wt% MeOH using 6 wt% immobilized lipase in the presence of additional 10 wt% glycerol, to convert acylglycerols to FAMEs. The resulting product was composed of 91.1 wt% FAMEs, 0.6 wt% FFAs, 0.8 wt% triacylglycerols, 2.3 wt% diacylglycerols, and 5.2 wt% other compounds. Even though each step of reaction was repeated every 24 h by transferring the immobilized lipase to the fresh substrate mixture, the composition was maintained for >100 cycles.  相似文献   

17.
The accumulation of partial glycerides such as monoglyceride (MG) and diglyceride (DG) is one of the rate-limiting steps in plant oil methanolysis catalyzed by Rhizopus oryzae producing triacylglycerol lipase. To convert partial glycerides efficiently into their corresponding methyl esters (MEs), we attempted to use a mono- and diacylglycerol lipase (mdlB) derived from Aspergillus oryzae. By considering cost efficiency, R. oryzae and recombinant mdlB-producing A. oryzae were immobilized independently within polyurethane foam biomass support particles and directly utilized as a whole-cell biocatalyst. The mdlB-producing A. oryzae effectively exhibited substrate specificity toward MG and DG and was then used for the methanolysis of intermediate products (approximately 82% ME), which were produced using R. oryzae. In the presence of 5% water, the use of mdlB-producing A. oryzae resulted in less than 0.1% of MG and DG, whereas a considerable amount of triglyceride was present in the final reaction mixture. On the basis of these results, we developed a packed-bed reactor (PBR) system, which consists of the first column with R. oryzae and the second column containing both R. oryzae and mdlB-producing A. oryzae. Ten repeated-batch methanolysis cycles in the PBR maintained a high ME content of over 90% with MG and DG at 0.08–0.69 and 0.22–1.45%, respectively, indicating that the PBR system can be used for long-term repeated-batch methanolysis with partial glycerides at low levels. The proposed method is therefore effective for improving enzymatic biodiesel production.  相似文献   

18.
A novel magnetic poly(vinyl acetate (VAc)–divinyl benzene (DVB)) material (8–34 μm) was synthesized by copolymerization of vinyl acetate and divinyl benzene using oleic acid-stabilized magnetic colloids as magnetic cores. The magnetic colloids and the copolymer microspheres were characterized with transmission and scanning electron microscopes, respectively. Magnetization of the microspheres could be described by the Langevin function. All the observations indicated that the microspheres were superparamagnetic. Magnetic sedimentation of the microspheres was achieved within 3 min, over 300 times faster than the gravitational sedimentation. Candida cylindracea lipase (CCL) was immobilized to the porous carrier at up to 6750 IU/g carrier, remarkably higher than the previous studies. The pH and temperature dependencies of the immobilized CCL were investigated and the optimum temperature and pH for the immobilized CCL were determined. Activity amelioration of the immobilized CCL for the hydrolysis of olive oil was observed, indicating an interfacial activation of the enzyme after immobilization. Moreover, the immobilized CCL showed enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.  相似文献   

19.
20.
Fully understanding the structure of water is a crucial point in biophysics because this liquid is essential in the operation of the engines of life. Many of its amazing anomalies seem to be tailored to support biological processes and, during about a century, several models have been developed to describe the water structuring. In particular, a theory assumes that water is a mixture of domains constituted by two distinct and inter-converting structural species, the low-density water (LDW) and the high-density water (HDW). According to this theory, by using some particular solutes or changing the water temperature, it should be possible to modify the equilibrium between the two species, changing in this way the water behavior in specific biological processes, as in governing the shape and stability of the structures of proteins. In this work, we assess the possibility of obtaining information on the structures induced in water by specific salts or by temperature by measuring the delayed luminescence (DL) of some salt solutions and of water in the super-cooled regime. Previous works have demonstrated that the delayed luminescence of a system is correlated with its dynamic ordered structures. The results show significant DL signals only when the formation of LDW domains is expected. The measurement reveals a similar activation energy for the domains both in aqueous salt solutions and super-cooled water. It is worth noting that the time trend of DL signals suggests the existence of structures unusually long-lasting in time, up to the microsecond range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号