首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is considered as a lethal disease of bananas worldwide. To manage the disease effectively, 20 rhizospheric and 43 endophytic Trichoderma isolates obtained from 12 different Foc resistant banana accessions were evaluated against Foc in vitro and in vivo. In vitro screening among Trichoderma isolates for their multiple functions (mycelial and spore germination inhibition, hydrogen cyanide, chitinolytic enzymes, non-volatile and volatile metabolites production) in suppressing Foc and promoting plant growth (IAA production and phosphate solubilisation) indicated that the multiple biocontrol actions were significantly higher in 6 isolates of rhizospheric Trichoderma and 10 isolates of endophytic Trichoderma compared to other isolates. The greenhouse evaluation of individual application of these rhizospheric and endophytic Trichoderma isolates against Fusarium wilt pathogen in cv. Grand Naine (AAA) indicated significant suppression of Fusarium wilt disease and increased plant growth characters as compared to Foc pathogen inoculated plants. However, none of these individual Trichoderma isolates recorded complete suppression of Fusarium wilt disease. Therefore, the greenhouse evaluation involving combination of rhizospheric Trichoderma sp. NRCB3 + endophytic Trichoderma asperellum Prr2 recorded 100% reduction of Fusarium wilt disease and increased plant growth parameters up to 250% when compared to individual isolates application and Foc alone-inoculated plants. Further, the field evaluation of this combination of Trichoderma isolates applied for three times: (1) at 15 days before planting, (2) second month after planting and (3) fourth month after planting resulting in significant reduction of Fusarium wilt disease and also increase in bunch weight as compared to untreated control plants. Therefore, these Trichoderma isolates may be used in combination for the effective suppression of Fusarium wilt disease in banana.  相似文献   

2.
Fusarium root rot (Fusarium spp.) is one of the most important seedling diseases of coneflower (Echinacea spp.) in Alberta greenhouses. Effects of microbial antagonists (Trichoderma spp.) and fungicides, including difenoconazole, fludioxonil, and a mixture of fludioxonil, metalaxyl and difenoconazole, on the management of this disease, were investigated in Alberta. Twenty Trichoderma isolates demonstrated antagonistic activity to Fusarium in agar plate bioassays, with inhibition rates ranging from 44 to 65%. Some Trichoderma isolates significantly ( p < 0.05) reduced disease incidence and severity on seedlings in greenhouse experiments. An in vitro bioassay indicated that difenoconazole and the mixture equally inhibited the growth of both Fusarium and Trichoderma, but, while fludioxonil strongly inhibited the growth of Fusarium, it had little effect on Trichoderma, according to the dose--response models developed ( p < 0.01, R2= 0.902-0.998). Two Trichoderma isolates, T1 and T13 were applied singly or in combination with a low rate of fludioxonil in greenhouse evaluations. The results suggested that fludioxonil and Trichoderma could be integrated into a disease management program for fusarium root rot in coneflower.  相似文献   

3.
The enzymatic activity and the biocontrol ability of two new isolates of Trichoderma spp. (T-68 and Gh-2) were compared in laboratory and glasshouse experiments with a previously studied T. harzianum strain (T-35). In dual culture tests with Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. vasinfectum, isolates T-68 and Gh-2 overgrew the colonies of Fusarium, whereas T-35 failed to parasitize both wilt pathogens. Under glasshouse conditions, the three isolates of Trichoderma were effective in controlling Fusarium wilt of cotton but only T-35 was effective against F. oxysporum f. sp. melonis on muskmelon. When the three Trichoderma isolates were grown on liquid media containing laminarin, colloidal chitin or F. oxysporum f. sp. melonis cell walls as sole carbon sources, maximum β-1,3-glucanase and chitinase specific activity in the culture filtrates of all fungi was reached after 72h of incubation. When culture filtrates of the three Trichoderma isolates were incubated with freeze-dried mycelium of F. oxysporum f. sp. melonis or F. oxysporum f. sp. vasinfectum, different concentrations of glucose and N-acetyl-D-glucosamine were released. Overall no correlation was found between enzymatic activity and the biocontrol capability against Fusarium wilt on muskmelon and cotton.  相似文献   

4.
The Fusarium wilt caused by Fusarium oxysporum strains is the most devastating disease of cucumber, banana, and tomato. The biological control of this disease has become an attractive alternative to the chemical fungicides and other conventional control methods. In this review, the research trends and biological control efficiencies (BCE) of different microbial strains since 2000 are reviewed in detail, considering types of microbial genera, inoculum application methods, plant growth medium and conditions, inoculum application with amendments, and co-inoculation of different microbial strains and how those affect the BCE of Fusarium wilt. The data evaluation showed that the BCE of biocontrol agents was higher against the Fusarium wilt of cucumber compared to the Fusarium wilts of banana and tomato. Several biocontrol agents mainly Bacillus, Trichoderma, Pseudomonas, nonpathogenic Fusarium, and Penicillium strains were evaluated to control Fusarium wilt, but still this lethal disease could not be controlled completely. We have discussed different reasons of inconsistent results and recommendations for the betterment of BCE in the future. This review provides knowledge of the biotechnology of biological control of Fusarium wilt of cucumber, banana, and tomato in a nut shell that will provide researchers a beginning line to start and to organize and plan research for the future studies.  相似文献   

5.
Soil microbial communities are crucial to the functioning of agricultural systems but little information is available on the effects of allelochemicals on soil microorganisms in vivo. Cucumber seedlings grown in soil were treated with different concentrations of vanillin (0.02–0.2?μmol/g soil), a phenolic compound with autotoxic activity. The community structures and abundances of Fusarium and Trichoderma spp. in cucumber rhizosphere were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis and quantitative PCR, respectively. Results showed that vanillin changed the community structures of Fusarium and Trichoderma spp. Vanillin decreased the number of bands of Fusarium spp., but increased the number of bands, Shannon–Wiener and evenness indices of Trichoderma spp. (p?Fusarium and Trichoderma spp. (p?Fusarium and Trichoderma spp., and that these two microbial groups showed different responses to vanillin.  相似文献   

6.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

7.
More effective ways of applying biocontrol products should be developed based both on the characteristics of the biocontrol agents and the normal practices of the agricultural producer. A new system was developed to improve the biocontrol efficacy of Fusarium wilt for watermelon production, and this system was tested in pot and field experiments. Biocontrol was achieved by applying a novel bioorganic fertilizer product (BIO) to Fusarium-infested soil. The best biocontrol was obtained by application of a bioorganic fertilizer, BIO, into soil during the nursery phase of watermelon seedling followed by a second application to Fusarium-infested soil when watermelon seedlings were transplanted. In comparison with the controls, the incidence of the disease was reduced by 60–100% in the pot experiment and by 59–73% in the field experiment when the BIO was applied during the nursery stage. After application of BIO during the nursery stage, the number of colony-forming units of Fusarium oxysporum in rhizospheric soil was significantly (P < 0.05) inhibited compared to the controls. An in vitro experiment showed that the antagonist Paenibacillus polymyxa in the BIO could effectively colonize the rhizosphere of watermelon and proliferate along the extending plant roots. This inhibited growth of Fusarium oxysporum in the rhizosphere of watermelon and protected the watermelon roots from attack by the pathogens. The method used for biocontrol Fusarium wilt disease in watermelon should be a useful strategy to improve field efficacy of other biocontrol agents.  相似文献   

8.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

9.
Trichoderma viride (Pers.) pre-inoculated wheat seedlings infected with Fusarium oxysporum Schlecht. (co-stressed) did not show wilting symptoms compared to Fusarium infected seedlings. Antagonistic activity of T. viride could be demonstrated against Fusarium infection by dual culture experiment. After seven days post infection, morphological and physiological parameters such as, root and shoot length, fresh and dry weight, relative water content, total soluble protein, total chlorophyll and carotenoid contents were observed to be increased in co-stressed compared to Fusarium infected seedlings. Accumulation of hydrogen peroxide was enhanced in Fusarium infected tissues compared to co-stressed. Trichoderma mediated activation of antioxidant enzymes such as, catalase, guaiacol peroxidase, ascorbate peroxidase, superoxide dismutase in co-stressed seedlings indicated their involvement in enhanced resistance against Fusarium infection, which is suggestive of playing crucial role in mitigating cellular toxicity developed due to excess H2O2. Thus, Trichoderma pre-inoculation protected wheat against Fusarium infection by stabilising oxidative stress.  相似文献   

10.
Trichoderma has been used to manage a large number of pathogens, but there is a gap in the mechanisms used by these biocontrol agents regarding the physiological response of cassava plants (Manihot esculenta) when it is subjected to cassava root rot. The aims of this study were to investigate the antagonist activity of ten Trichoderma isolates against Fusarium solani on potato dextrose Agar (PDA), to quantify the chitinase production, to select and test in vivo the best isolate from each experiment and to assess the physiological response of cassava to the production of oxidative enzyme complex production (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase). All Trichoderma isolates have shown competitive capability against F. solani, and Trichoderma hamatum URM 6656 showed the highest inhibition of pathogen growth (88.91%). All isolates have shown chitinase activity, but Trichoderma aureoviride URM 5158 produced the highest amount of chitinase. T. hamatum URM 6656 and Taureoviride URM 5158 were selected to be applied in vivo. The two Trichoderma strains reduced 64 and 60% of the disease severity in the shoot and 82 and 84% in the root. Cassava plants infected with Trichoderma have shown the highest peroxidase and ascorbate peroxidase production. Our results have indicated that T. aureoviride URM 5158 is an effective biocontrol agent against cassava root rot caused by F. solani, because it presented competitive antagonist capability in vitro, the highest chitinase production, and reduced the cassava root rot severity. The application of T. aureoviride has led to the maximum enzyme activity of reactive oxygen species group in cassava plants.  相似文献   

11.
Plant diseases, caused by various microorganisms, including viruses, bacteria, fungi, protozoa and nematodes, affect agricultural practices and result in significant crop losses. Fungal pathogens are the major cause of plant diseases and infect most plants. Agrochemicals play a significant role in plant disease management to ensure a sustainable and productive agricultural system. However, the intensive use of chemicals has adverse effects on humans and ecosystem functioning and also reduces agricultural sustainability. A sustainable agriculture is achieved through reduction or elimination of fertilizers and agrochemicals, resulting in minimal impact to the environment. Recently, the use of antagonistic endophytes as biocontrol agents is drawing special attention as an attractive option for management of some plant diseases, resulting in minimal impact to the environment. Endophytes that resides asymptomatically within a plant, have the potential to provide a source of candidate strains for potential biocontrol applications. This review addresses biocontrol methods using endophytic fungi such as Colletotrichum, Cladosporium, Fusarium, Pestalotiopsis and Trichoderma species as an attractive option for management of some plant diseases. Potential endophytes are screened in vitro and in vivo to test their antagonistic actions by different mechanisms, including mycoparasitism, production of lytic enzymes and/or antibiotics and induction of plant defenses. Currently, efforts are being made to commercialize these biocontrol agents. A continued research pipeline consisting of screening, in vitro and in vivo testing, biomass production and commercialization of endophytes as biocontrol agents may contribute to sustainable agriculture.  相似文献   

12.
Trichoderma spp. are well-known biological agents that have significant antagonistic activity against several plant pathogenic fungi. In the present study, Trichoderma spp. were tested in vitro for their antagonistic activity against different spp. of Fusarium and Alternaria viz. Alternaria alternata, A. brassicae, A. solani, Fusarium oxysporum and F. solani using dual plate assay and by the production of volatile and non-volatile compounds. The results obtained revealed that Trichoderma harzianum and T. viride effectively inhibited the growth and spore production of different spp. of Fusarium and Alternaria. The highest growth inhibition was found in A. alternata 62.50% and 60.00% by non-volatile compounds of T. harzianum and T. viride, respectively. Similarly, the volatile compounds inhibit the maximum growth of A. alternata 40.00% and 35.00% by T. harzianum and T. viride, respectively. Volatile and non-volatile compounds of Trichoderma spp. were analysed by GC-MS technique and the properties of distinguished compounds showed antifungal, antimicrobial and antibiotic activities. Volatile compounds of T. harzianum and T. viride showed highest percent abundance for glacial acetic acid (45.32%) and propyl-benzene (41.75%), respectively. In case of non-volatile compounds, T. harzianum and T. viride showed D-Glucose, 6-O-α-D-galactopyranosyl- (38.45%) and 17-Octadecynoic acid (36.23%), respectively. The results of present study confirmed that T. harzianum can be used as a promising biological control agent against Alternaria and Fusarium spp. that cause diseases in various vegetables and crops.  相似文献   

13.
【目的】探索3株海洋生境木霉的应用潜力。【方法】经过筛选和诱变,获得高抑菌活性及产孢量的木霉突变株;通过优化培养基、温度、初始p H考察其产孢量及最适培养条件;综合抑菌谱、重寄生及抑菌相关基因考察其抑菌活性;采用特殊培养基法考察其产纤维素酶、植酸酶、铁载体以及降解磷钾的能力,高效液相色谱法测定其产吲哚乙酸能力。【结果】3株木霉菌的产孢量分别为3.45×108、3.10×108和2.55×108 CFU/cm2,与野生型相比分别提高了88.52%、63.16%和180.22%;且均可产生厚垣孢子,其中XG20-1厚垣孢子产量最高,达到3.56×108 CFU/m L。3株木霉菌具有较广抑菌谱及对番茄早疫病菌的重寄生作用,同时扩增得到Tex1、Nag1、Eg1基因,生物学测试显示其均具有产纤维素酶、几丁质酶以及铁载体的能力,证明其抑菌活性是多种机制共同作用的结果;菌株可以降解磷钾,且吲哚乙酸产量分别为2.61、1.57和1.92 mg/L,具有促进植物生长的潜力。【结论】本文中3株木霉菌在开发为生防菌与生物肥料方面展现出良好的应用潜力。  相似文献   

14.
Nineteen Trichoderma isolates, collected from different locations in Bangladesh, were characterised through phenotypic, biochemical and molecular means. Besides, they were assessed for their antifungal action in vitro. The isolates were divided into three groups: T. asperellum, T. virens and T. harzianum. A dual culture assay and a culture filtrate assay against 6 phytopathogens revealed that 9 of the 19 isolates showed significant antifungal activities. The isolate T. harzianum TR05 showed the highest inhibition against Fusarium oxysporum, Rhizoctonia solani, Fusarium circinatum and Phomopsis vexans, followed by T. asperellum TR08 and T. virens TR06. TR08 had the highest inhibition against Sclerotium rolfsii and Pythium aphanidermatum, followed by TR05 and TR06. These findings were in agreement with their activities of extracellular hydrolytic enzymes, including chitinase, β-1,3-glucanase, and proteinase. Our results suggest that isolates TR05, TR06 and TR08 have the potential to be effective biocontrol agents against the phytopathogenic fungi.  相似文献   

15.
The biological efficacy of Trichoderma species may differ due to variations in ecosystems. This study was conducted to assess the biocontrol efficacy of some native Trichoderma isolates against Fusarium solani, an important causal agent of potato wilt disease under laboratory and greenhouse conditions at Shahrood Agricultural Research Centre, Shahrood, Iran, during 2006–2007. Fourteen isolates were collected among which eight showed promising ability in inhibiting the growth of the pathogen through dual culture and production of volatile and non-volatile inhibitors but T. brevicompactum (T1), T. longibrachiatum (T5) and T. asperellum (T2) were almost better than other isolates in inhibiting the mycelial growth of the pathogen in comparison to control in the above three tests (p ≤ 0.01). Isolates performing mycoparasitism under in vitro condition were evaluated against the disease in pot culture under greenhouse condition. In all treatments in which Trichoderma isolates + F. solani were involved lower disease incidence was noticed in comparison to Fusarium-infested control (p ≤ 0.05). Best disease control was observed in potted plants treated with F. solani + T. longibrachiatum (T5) with 6.25% disease incidence in comparison to Fusarium-infested control, in which disease incidence was observed to be 75%. Interaction of T. brevicompactum (T1) and F. solani also indicated good control of the disease by 12.50% of disease incidence.  相似文献   

16.
Yakimenko  E. E.  Grodnitskaya  I. D. 《Microbiology》2000,69(6):726-729
Soils in the tree nurseries studied were characterized by a lower species diversity of fungi than adjacent virgin soils. In particular, the relative abundances of representatives of the genera Mucor, Chaetomium, and Trichoderma in the nursery soil were two times lower than in adjacent virgin soils. On the other hand, the nursery soil exhibited greater abundances of fungi of the genus Fusarium, which are causative agents of many diseases of conifer seedlings. To appreciate the efficiency of biocontrol of the infectious diseases of conifer seedlings, we introduced several indigenous Trichoderma strains into the nursery soil and found that this affected the species composition of soil microflora considerably. Changes in the species composition of mycobiota beneficially influenced the phytosanitary state of soils and reduced the infectious lodging of conifer seedlings.  相似文献   

17.
Black root rot, caused by Fusarium solani f.sp. pisi, is a devastating soil‐borne disease in chickpea in Iran with no effective control measures. With the aim of finding applicable biocontrol agents to alleviate the malady, isolates of Actinomycetes isolated from soil and their antagonistic effect against F. solani f.sp. pisi were evaluated both in vitro and in vivo. More than 100 Actinomycetes isolates were screened for their antifungal activities against the pathogen. The most active isolates were evaluated in greenhouse for their biocontrol performance. Based on the results of dual cultures in screening evaluations, the size of inhibition zone of fungal growth, and the most effective antagonist isolates (S3, S12 and S40) were selected for further studies. Identity of active isolates was determined, in this regard, 16S rDNA of isolates were amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then performed using NCBI BLAST method. Comparison of the near full length 16S rRNA sequence of isolates to GenBank sequences demonstrated that isolates S3 and S12 were most similar to Streptomyces antibioticus, while isolate S40 was most similar to Streptomyces peruviensis. Biocontrol studies of these isolates in control of the disease in greenhouse significantly decreased the disease severity. Actinomycetes isolate S12 demonstrated the greatest effect in reducing disease than the other two. Results of this research are at preliminary stage for developing biocontrol agents. These data can be utilized as a platform for future studies with the aim of commercializing these biocontrol products and hoping to step towards sustainable agriculture.  相似文献   

18.
A study was carried out to test direct and indirect antagonistic effect against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and plant growth-promoting (PGP) traits of bacteria isolated from rhizosphere soils of chickpea (Cicer arietinum L.). A total of 40 bacterial isolates were tested for their antagonistic activity against FOC and of which 10 were found to have strong antagonistic potential. These were found to be Streptomyces spp. (five isolates) and Bacillus spp. (five isolates) in the morphological and biochemical characterisation and 16S rDNA analysis. Under both greenhouse and wilt sick field conditions, the selected Streptomyces and Bacillus isolates reduced disease incidence and delayed expression of symptoms of disease, over the non-inoculated control. The PGP ability of the isolates such as nodule number, nodule weight, shoot weight, root weight, grain yield and stover yield were also demonstrated under greenhouse and field conditions over the non-inoculated control. Among the ten isolates, Streptomyces sp. AC-19 and Bacillus sp. BS-20 were found to have more potential for biocontrol of FOC and PGP in chickpea. This investigation indicates that the selected Streptomyces and Bacillus isolates have the potential to control Fusarium wilt disease and to promote plant growth in chickpea.  相似文献   

19.
Fusarium head blight (FHB) caused by Gibberella zeae (anamorph = Fusarium graminearum) is a devastating disease that causes extensive yield and quality losses to wheat in humid and semi-humid regions of the world. Biological control has been demonstrated to be effective under laboratory conditions but a few biocontrol products have been effective under field conditions. The improvement in the physiological quality of biocontrol agents may improve survival under field conditions, and therefore, enhance biocontrol activity. Bacillus subtilis RC 218 and Brevibacillus sp. RC 263 were isolated from wheat anthers and showed significant effect on control of FHB under greenhouse assays. This study showed the effect of water availability measured as water activity (aW) using a growth medium modified with NaCl, glycerol and glucose on: (i) osmotic stress tolerance, (ii) viability in modified liquid medium, (iii) quantitative intracellular accumulation of betaine and ectoine and (iv) the biocontrol efficacy of the physiologically improved agents. Viability of B. subtilis RC 218 in NaCl modified media was similar to the control. Brevibacillus sp. RC 263 showed a limited adaptation to growth in osmotic stress. Betaine was detected in high levels in modified cells but ectoine accumulation was similar to the control cells. Biocontrol activity was studied in greenhouse assays on wheat inoculated at anthesis period with F. graminearum RC 276. Treatments with modified bacteria reduced disease severity from 60% for the control to below 20%. The physiological improvement of biocontrol agents could be an effective strategy to enhance stress tolerance and biocontrol activity under fluctuating environmental conditions.  相似文献   

20.
【背景】粮食在生长和收储期极易受到病原真菌或产毒真菌的污染,造成严重的损失。众多实践证明木霉属(Trichoderma)可以有效防治植物病原真菌。【目的】鉴定和筛选能有效抑制粮食常见危害真菌的木霉生防菌株,开发生防菌剂,保障粮食生产安全。【方法】从粮食上分离筛选出35株木霉,通过多基因系统发育分析和形态学观察方法进行菌种鉴定,利用平板对峙试验筛选出对粮食常见危害真菌有抑制作用的菌株。【结果】35株木霉分属于8个种,分别为非洲哈茨木霉(Trichodermaafroharzianum)、类棘孢木霉(Trichodermaasperelloides)、 Trichoderma amoenum、近深绿木霉(Trichoderma paratroviride)、Trichoderma obovatum、长枝木霉(Trichoderma longibrachiatum)、东方木霉(Trichodermaorientale)和深绿木霉(Trichodermaatroviride)。对峙试验结果表明,这8种木霉对于粮食上分离到的10种危害真菌均具有较好的抑制效果。非洲哈茨木霉(T.afroharzi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号