首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mashhor Mansor 《Hydrobiologia》1996,340(1-3):121-125
After ten years of field surveys on various water bodies ranging from stagnant water ponds, pools and man-made lakes to flowing waters such as rivers, streams and canals, there is a clear evidence of four problematic weeds in Malaysia. These species are Eichhornia crassipes, Salvinia molesta, Lemna perpusilla, and Pistia stratiotes. Among these weeds, E. crassipes and S. molesta are widely distributed througout Malaysia. E. crassipes generally dominates canals and rivers although, recently, this species has spread to man-made lakes. The favourable tropical climate and conducive environmental factors help to trigger the massive growth of these weeds. The high nutrient concentrations, notably phosphate which has a soluble reactive concentration greater than 0.1 mg l–1, initiate a high productivity. Manual control methods are generally used and several herbicides including 2,4-D and glyphosate are frequently employed to eradicate these weeds.  相似文献   

2.
Abstract

Phytoremediation by aquatic macrophytes is a promising technology with higher efficiency and no energy consumption. For this purpose, two macrophytes (Pistia stratiotes, Eichhornia crassipes), and an alga (Oedogonium sp.) were used to treat textile effluents rich in COD, BOD, dyes, and heavy metals (Pb, Fe, Cd, Cu). The aim of the study was to focus on comparative phytoremediation potential of these species by their metal removal capability. During 7?days experiment (day 0–day 6), the results showed that Oedogonium sp. was the best for COD removal and decolorization. Eichhornia crassipes was the best for BOD and heavy metal removal and proves more efficient than Pistia stratiotes and Oedogonium sp. However, Pistia stratiotes was found to accumulate more concentrations of Pb and Fe than Eichhornia stratiotes.  相似文献   

3.
Abstract

In the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15?days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p?<?0.05/p?<?0.01/p?<?0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80–90%), Fe (83–87%) and Pb (76–84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate.  相似文献   

4.
The biology and host specificity of the aquatic grasshopper,Paulinia acuminata (De Geer) were studied in quarantine in Australia. Adults and nymphs fed on the leaves of salvinia (Salvinia molesta), water lettuce (Pistia stratiotes) and azolla (Azolla pinnata). Fifty-three plant species representing 38 families were exposed to adults and nymphs ofP. acuminata. Adult feeding occurred on 17 plants but nymphs failed to feed on 9 of these species in the presence ofS. molesta. In starvation trials, 14 plants (excludingS. molesta, P. stratiotes andA. pinnata) were attacked by adults, of which only 5 were attacked by nymphs. Heavy feeding occurred on strawberry (Fragaria xananassa) but no oviposition occurred even when the leaves were held in contact with the water surface. The life cycle ofP. acuminata was completed only onS. molesta, P. stratiotes andA. pinnata. Eggs deposited on water hyacinth (Eichhornia crassipes) failed to hatch. Laboratory evaluation was supplemented with observations on the distribution and abundance ofP. acuminata on the Zambezi River system, Zimbabwe, during October 1984.  相似文献   

5.
The present study was focused on field research to examine the phytoremediation potential of naturally grown Eichhornia crassipes in fly ash (FA) pond. Field results indicate the efficiency of E. crassipes for remediation of heavy metals from FA pond. The bioconcentration factor trend was Cr (3.75) > Cu (2.62) > Cd (1.05), and Cu (1.35) in root and stem, respectively. The survival and abundance growth of E. crassipes in the circumstance of heavy metal enriched FA pond is another highlight of the present research that reveals its toxitolerant characteristics. Thus, this lesson on phytoremediation proved that E. crassipes is a potential accumulator of Cu, Cr, and Cd from FA ponds and is a promising species for FA pond's remediation globally.  相似文献   

6.
The study deals with metal (Cu, Mn, Pb, Cd) concentrations in sediment, water, and corresponding leaf samples of Eichhornia crassipes obtained from ponds in nonmining (P1) and mining (P2, P3, P4) regions. In spite of significant high metal concentrations in sediments from mining regions rather than from nonmining regions, the unelevated SQG-I (sediment quality guideline index) values proved low levels of toxicity. Irrespective of the wide range of metal concentration in sediments, the levels in water had been nearly consistent in all the ponds. Concentration of metals in leaves decreased with an increase in concentration in the substrate. Mn, Cu, and Cd accumulated within the range of MAC (maximum allowable concentration) for plants, whereas Pb accumulated above the limit. BAFsl (bioaccumulation factor with respect to sediment) values for Mn (0.20–0.27) were highest, followed by Cu (0.13–0.20) and Pb (0.03–0.20), whereas BAFwl (bioaccumulation factor with respect to water) was highest for Cu (428–3205), followed by Mn (285–1100), Pb (242–506), and Cd (7–130). This study concludes that E. crassipes plays a very important role in removing the metals from the pond ecosystem, whereas leaves of this plant can be used effectively for biomonitoring surveys. E. crassipes can be used for phytoremediation of polluted wetlands through proper management strategies.  相似文献   

7.
In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 l mg−1 d−1. The Cr3+ removal efficiency was about 90%, 50%, and 90% for the Ecrassipes, Pstratiotes, and Sauriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the Ecrassipes, Pstratiotes, and Sauriculata.  相似文献   

8.
Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level.  相似文献   

9.
Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L?1) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely “‘Salvinia molesta and Pistia stratiotes.” After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.  相似文献   

10.
Wei B  Yu X  Zhang S  Gu L 《Microbiological research》2011,166(6):468-474
Some common floating aquatic macrophytes could remove nutrients, such as nitrogen, from eutrophic water. However, the relationship between these macrophytes and the ammonia-oxidizing microorganisms on their rhizoplanes is still unknown. In this study, we examined communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) on the rhizoplanes of common floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Ipomoea aquatic) in a eutrophic reservoir.The results show that AOB were the predominant ammonia-oxidizer on the three rhizoplanes. The principal AOB were Nitrosomonas europaea and Nitrosomonas ureae clades. The principal group of AOA was most similar to the clone from activated sludge. The ratio of AOB amoA gene copies to AOA varied from 1.36 (on E. crassipes) to 41.90 (on P. stratiotes). Diversity of AOA was much lower than that of AOB in most samples, with the exception of P. stratiotes.  相似文献   

11.
Large river floodplains are convenient model systems to test for variation in animal and plant community structure, as they have a variety of habitats and substrates and are generally dynamic systems through the occurrence of flood pulses with varying intensity. South American floodplain systems furthermore have unique types of substrates, in the form of root systems of floating macrophytes. Here, we investigate the variation in ostracod (small, bivalved crustaceans) communities in relation to substrates and related environmental variables. Sampling was effected in 2004 in the alluvial valley of the upper Paraná River, Brazil, in the wet and dry seasons. Five different substrates, including littoral sediment and four macrophyte species root and leaf systems, in four hydrological systems and a variety of habitat types, were sampled. Fifty-four species of Ostracoda were found. Variation partitioning analysis (RDA) showed that ostracod communities significantly differed between different substrates, mainly between the littoral and plants with small root systems (Eichhornia azurea) on the one hand, and plants with large and complex root systems on the other hand (Eichhornia crassipes and Pistia stratiotes). RDA analyses indicated that the pleuston (biotic communities associated with root systems of floating plants) of E. crassipes comprised more non-swimming species than the pleuston of the smaller roots of P. stratiotes, but species-level Kruskal–Wallis analyses could not detect significant differences between both macrophyte species. Also habitat type and hydrological systems contributed to variation amongst ostracod communities, but less so than the factor substrate. Abiotic factors also contributed to variation, but the ranges of all measured water chemistry variables were narrow. This uniformity in abiotic factors, which might be owing to the occurrence of large flooding events, unites all water bodies, even those that are generally separated.  相似文献   

12.
The biology and host specificity ofSamea multiplicalis (Guenée) were studied in quarantine in Australia. Immature stages completed development onSalvinia molesta Mitchell,Pistia stratiotes L. andAzolla pinnata R.Br. In starvation tests, although larvae which had first fed onS. molesta produced minor leaf scarring on some other plants, they were unable to complete development. Damage toS. molesta andP. stratiotes indicated thatS. multiplicalis may be a valuable biological control agent for these weeds in Australia.S. multiplicalis was first liberated in northern Queensland in 1981 where it has become established onS. molesta.  相似文献   

13.
Adams  C. S.  Boar  R. R.  Hubble  D. S.  Gikungu  M.  Harper  D. M.  Hickley  P.  Tarras-Wahlberg  N. 《Hydrobiologia》2002,488(1-3):115-122
The floating water fern Salvinia molesta has occurred in Lake Naivasha since the early 1960s and during this period has obstructed fishing activities and navigation. In recent years the extent of Salvinia has declined markedly. Since 1988, a second floating weed, Eichhornia crassipes (water hyacinth), has colonised the lake. Salvinia formed large mats around the edges, bays and lagoons and had very few plant or invertebrate species associated with it. Mats of E. crassipes, however, support a greater abundance and variety of animal and plant species, which shows a relationship with mat size. This seems to have facilitated plant succession but without a zonation typical of the classic hydroseral sequence for the lake.  相似文献   

14.
Using the patch‐clamp technique, we investigated the transport properties of vacuolar ion channels from the roots of water hyacinth, Eichhornia crassipes (Mart. Solms, Pontederiacae). Eichhornia crassipes vacuoles displayed large voltage‐dependent rectifying slow‐vacuolar (SV) currents, which activated in a few seconds at positive potentials and deactivated at negative voltages in a few hundreds of millseconds. Similarly to SV channel previously identified in the tonoplast of terrestrial plants, SV currents in E. crassipes were activated by micromolar concentrations of Ca2+ and current slightly increased (25%) on addition (10 mm ) of the reducing agent dithiothreitol (DTT). Eichhornia crassipes SV channels were equally permeable to K+ and Na+. The permeability sequence derived from current values is: K+ ≈ Na+ > Rb+ > NH4+ ≈ Cs+ >> TEA+. Excised membrane patches displayed single channel transitions typical of SV‐type single channel openings with a conductance of (83·0 ± 5·6) pS; a smaller channel with a conductance of (31·0 ± 2·7) pS was also identified. Metals such as Ni2+ and Zn2+ decreased the vacuolar current in a reversible manner. However, although Zn2+ inhibition is comparable to that induced by the same metal in vacuoles from the main root of sugar beet (Beta vulgaris L.), the inhibition of the SV currents by Ni2+ is not as substantial in E. crassipes as in sugar beet. To our knowledge, this is the first electrophysiological characterization of ionic transport in E. crassipes, a pervasive troublesome aquatic weed, which has exceptional absorption properties of several water contaminants such as heavy metals, pesticides and phenols.  相似文献   

15.
This paper elucidates the phytoremediation potential of water hyacinth and water lettuce on the reduction of wastewater toxicity. Acute toxicity tests were performed in an aquarium with a population of Sarotherodon melanotheron, contaminated by different concentrations of wastewaters before and after phytoremediation with Eichhornia crassipes and Pistia stratiotes. Lethal concentrations (LC50) of the fish's population obtained during 24 hours of exposures were determined. COD, BOD, ammonium, TKN and PO43? concentrations in wastewaters were of 1850.29, 973.33, 38.34, 61.49 and 39.23 mg L?1, respectively, for each plant. Phytoremediation reduced 58.87% of ammonium content, 50.04% of PO43?, 82.45% of COD and 84.91% of BOD. After 15 days of the experiment, metal contents in treated wastewaters decreased from 6.65 to 97.56% for water hyacinth and 3.51 to 93.51% for water lettuce tanks. Toxicity tests showed that the mortality of fish exposed increased with increase in concentration of pollutants in wastewaters and the time of exposure. Therefore, the highest value of LC50 was recorded for fish subjected to 3 hours of exposure (16.37%). The lowest rate was obtained after an exposure of 20 to 24 hours (5.85%). After phytoremediation, the effluents purified by Eichhornia crassipes can maintain the fish life beyond 24 hours of exposure.  相似文献   

16.
The phytoremediation potential of three aquatic plants namely, water lettuce(Pistia stratioes), water hyacinth (Eichhornia crassipes), and water spinach (Ipomoea aquatica) for nitrate N and phosphorus from nutrient treated ground water was assessed. A total of twelve treatment combinations including four levels of nitrate (expressed as nitrate N 0, 20, 40, and 60 mg/l) and three levels of phosphorus (0, 20, and 40 mg/l) were treated for the total volume of 1 and 20 liters of water respectively, for Pistia stratiotes and Eichhornia crassipes. For Ipomoea aquatica ten treatment combinations with five levels of nitrate N (0, 10, 20, 40, and 50 mg/l) and two levels of phosphorus (0 and 5 mg/l) were treated to 3 liters of water. The design used was a two factor factorial with three replicates. Water was analyzed at weekly interval for nitrate N and phosphorus. Pistia stratiotes, Eichhornia crassipes and Ipomoea aquatica had the potential to remove nitrate N between 61.5–91.8%, 40–63.5%, and 29.3–75% during the period of six, three and three and weeks, respectively. In addition, 90–99%, 75–97.2%, and 75–83.3% of phosphorus was removed from water by Pistia stratiotes, Eichhornia crassipes and Ipomoea aquatica respectively, during the same period.  相似文献   

17.
Eichhornia crassipes (Mart.) Solms, Pistia stratiotes (L.), and Lemna minor (L.) were cultured at four different densities each and analyzed for cell-wall fraction, crude protein, total available carbohydrate and ash. Cell-wall fraction increased and crude protein content decreased as density increased in Eichhornia and Pistia cultures. The cell-wall and crude protein content of Lemna did not change with increasing culture density. Differences in the trends of cell-wall and crude protein content of the three plants at increasing culture densities appear to be related to differences in growth form. There was no difference in the total available carbohydrate or ash content of the three species at different culture densities.  相似文献   

18.
Phytoremediation is an emerging technology that uses green plants (living machines) for removal of contaminants of concern (COC). These plant species have the potential to remove the COC, thereby restoring the original condition of soil or water environment. The present study focuses on assessing the heavy metals (COC) present in the contaminated water bodies of Ranchi city, Jharkhand, India. Phytoremedial potential of three plant species: Typha latifolia, Eichornia crassipes and Monochoria hastata were assessed in the present study. Heterogenous accumulation of metals was found in the three plant species. It was observed that the ratio of heavy metal concentration was different in different parts, i.e., shoots and roots. Positive results were also obtained for translocation factor of all species with minimum of 0.10 and maximum of 1. It was found experimentally that M. hastata has the maximum BFC for root as 4.32 and shoot as 2.70 (for Manganese). For T. latifolia, BCF of maximum was observed for root (163.5) and respective shoot 86.46 (for Iron), followed by 7.3 and 5.8 for root and shoot (for Manganese) respectively. E. crassipes was found to possess a maximum BCF of 278.6 (for Manganese and 151 (for Iron) and shoot as 142 (for Manganese) and 36.13 (for Iron).  相似文献   

19.
湿地生态系统中凤眼莲(Eichhornia crassipes)入侵造成湿地植物群落结构退化及功能崩溃,直接影响沉水植物的生长繁殖及初级生产力。目前关于凤眼莲的入侵机制有一定的研究,而关于凤眼莲入侵程度对沉水植物金鱼藻(Ceratophyllum demersum)和黑藻(Hydrilla verticillate)生长及种间关系的影响相对缺乏。以外来入侵植物凤眼莲,沉水植物金鱼藻和黑藻为研究对象,设计凤眼莲入侵程度(无入侵,轻度入侵对应盖度25%,重度入侵对应盖度75%)交叉定植方式(黑藻单种模式、金鱼藻单种模式,金鱼藻和黑藻混种模式)的控制实验,探究凤眼莲入侵强度对沉水植物金鱼藻和黑藻生长及种间关系的影响。结果表明,凤眼莲入侵程度显著降低了金鱼藻的生物量、分枝数;黑藻的株高、分枝数和分节数。无凤眼莲入侵时,两种沉水植物生物量均最大,两者种间竞争关系较强;随凤眼莲入侵盖度增加,两种沉水植物的生物量先急剧降低后略微增加,种间关系经过微弱促进后又变为竞争作用,其中黑藻表现出明显的竞争优势。此外,凤眼莲入侵略微降低了水体中的总氮、总磷含量。结构方程模型分析结果表明凤眼莲入侵以及水体总氮、总磷等水体理化性质对沉水植物生长均有显著负向影响(P<0.05),且水体理化性质对沉水植物生长的影响强于凤眼莲入侵。总之,凤眼莲入侵显著降低了金鱼藻和黑藻生长繁殖,随着凤眼莲入侵程度增加,两种沉水植物种间关系由竞争转变为促进再转变为竞争。研究结果为凤眼莲入侵有效控制及湿地沉水植被的恢复与重建提供了一定的理论依据和技术支撑。  相似文献   

20.
This study aimed to evaluate the pH, phosphate, and nitrate in the process of arsenic absorption by Eichhornia crassipes (water hyacinth), using the surface response methodology, in order to optimize the process. The plants were exposed to a concentration of arsenic of 0.5 mg L?1 (NaAsO2) over a period of 10 days. The results indicated optimal levels for the absorption of arsenic by E. crassipes at pH equal to 7.5, absence of phosphate, and minimum nitrate level of 0.0887 mmol L?1. For the tested concentration, E. crassipes was able to accumulate 498.4 mg kg?1 of As (dry base) in its plant tissue and to reduce 83% of the initial concentration present in the aqueous medium where it was cultivated. The concentration of phosphorus in solution linearly increased the phosphorus content in the plants and negatively influenced the absorption of arsenic. The concentration of 0.5 mg L?1 of As did not significantly affect the relative growth rate (RGR) and the tolerance index (TI). 94% of As (III) initially solubilized in water was converted by the end of the experiment period into As (V). The water hyacinth was important in the phytoremediation of arsenic when cultivated under optimal conditions for its removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号