首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Abstract

The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of γ-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.  相似文献   

2.
The breakdown of human immune tolerance to self-proteins occurs by a number of mechanisms, including posttranslational modifications of host molecules by reactive oxygen, nitrogen, or chlorine species. This has led to great interest in detecting serum autoantibodies raised against small quantities of oxidatively modified host proteins in patients with autoimmune inflammatory diseases, such as rheumatoid arthritis. Here, we provide protocols for the preparation and chemical characterization of oxidatively modified protein antigens and procedures for their use in immunoblotting and ELISAs that detect autoantibodies against these antigens in clinical samples. These gel electrophoresis- and plate reader-based immunochemical methods sometimes suffer from low analytical specificity and/or sensitivity when used for serum autoantibody detection. This is often because a single solid-phase protein (antigen) is exposed to a complex mixture of serum proteins that undergo nonspecific binding. Therefore more sensitive/specific techniques are required to detect autoantibodies specifically directed against oxidatively modified proteins. To address this, we describe novel affinity chromatography protocols by which purified autoantibodies are isolated from small volumes (<1 ml) of serum. We have also developed strategies to conjugate submilligram amounts of isolated immunoglobulins and other proteins to fluorophores. This set of methods will help facilitate the discovery of novel diagnostic autoantibodies in patients.  相似文献   

3.
《Free radical research》2013,47(5):681-691
Abstract

Exposure to rotenone in vivo results in selective degeneration of dopaminergic neurons and development of neuropathologic features of Parkinson's disease (PD). As rotenone acts as an inhibitor of mitochondrial respiratory complex I, we employed oxidative lipidomics to assess oxidative metabolism of a mitochondria-specific phospholipid, cardiolipin (CL), in substantia nigra (SN) of exposed animals. We found a significant reduction in oxidizable polyunsaturated fatty acid (PUFA)-containing CL molecular species. We further revealed increased contents of mono-oxygenated CL species at late stages of the exposure. Notably, linoleic acid in sn-1 position was the major oxidation substrate yielding its mono-hydroxy- and epoxy-derivatives whereas more readily “oxidizable” fatty acid residues (arachidonic and docosahexaenoic acids) remained non-oxidized. Elevated levels of PUFA CLs were detected in plasma of rats exposed to rotenone. Characterization of oxidatively modified CL molecular species in SN and detection of PUFA-containing CL species in plasma may contribute to better understanding of the PD pathogenesis and lead to the development of new biomarkers of mitochondrial dysfunction associated with this disease.  相似文献   

4.
《Free radical research》2013,47(4):492-522
Abstract

Oxidatively damaged DNA is implicated in various diseases, including neurodegenerative disorders, cancer, diabetes, cardiovascular and inflammatory diseases as well as aging. Several methods have been developed to detect oxidatively damaged DNA. They include chromatographic techniques, the Comet assay, 32P-postlabelling and immunochemical methods that use antibodies to detect oxidized lesions. In this review, we discuss the detection of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG), the most abundant oxidized nucleoside. This lesion is frequently used as a marker of exposure to oxidants, including environmental pollutants, as well as a potential marker of disease progression. We concentrate on studies published between the years 2000 and 2011 that used enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry to detect 8-oxodG in humans, laboratory animals and in cell lines. Oxidative damage observed in these organisms resulted from disease, exposure to environmental pollutants or from in vitro treatment with various chemical and physical factors.  相似文献   

5.
Abstract

Oxidative stress is the hallmark of various chronic inflammatory lung diseases. Increased concentrations of reactive oxygen species (ROS) in the lungs of such patients are reflected by elevated concentrations of oxidative stress markers in the breath, airways, lung tissue and blood. Traditionally, the measurement of these biomarkers has involved invasive procedures to procure the samples or to examine the affected compartments, to the patient's discomfort. As a consequence, there is a need for less or non-invasive approaches to measure oxidative stress. The collection of exhaled breath condensate (EBC) has recently emerged as a non-invasive sampling method for real-time analysis and evaluation of oxidative stress biomarkers in the lower respiratory tract airways. The biomarkers of oxidative stress such as H2O2, F2-isoprostanes, malondialdehyde, 4-hydroxy-2-nonenal, antioxidants, glutathione and nitrosative stress such as nitrate/nitrite and nitrosated species have been successfully measured in EBC. The reproducibility, sensitivity and specificity of the methodologies used in the measurements of EBC oxidative stress biomarkers are discussed. Oxidative stress biomarkers also have been measured for various antioxidants in disease prognosis. EBC is currently used as a research and diagnostic tool in free radical research, yielding information on redox disturbance and the degree and type of inflammation in the lung. It is expected that EBC can be exploited to detect specific levels of biomarkers and monitor disease severity in response to appropriate prescribed therapy/treatment.  相似文献   

6.
ABSTRACT

Introduction: Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients.

Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis.

Expert commentary: Potential biomarkers have already been assessed in patients’ blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.  相似文献   

7.
Capsule Population sizes of Common Guillemots Uria aalge, Razorbills Alca torda and Lesser Black‐backed Gulls Larus fuscus were associated with prey abundance but not prey quality.

Aims To examine how the abundance and quality of prey fish affects seabird population size and to test the ‘junk‐food’ or nutritional stress hypothesis.

Methods Analysis of long‐term seabird population size data and Sprat Sprattus sprattus biomass and age‐related weight data using a correlative approach.

Results De‐trended seabird and Sprat population data showed that the abundance of Sprat, the main prey species, was associated with the abundance of seabirds, while no effect of age‐related size of prey on seabird population size was found.

Conclusion As the Sprat population increased so did the seabird populations, regardless of decreases in ‘quality’ of Sprats, implying that more prey fish simply seem to mean more food in this marine ecosystem. No support for the ‘junk‐food’ hypothesis was found and the results contradict suggestions from earlier studies that prey quality is important to top‐predators in the Baltic Sea.  相似文献   

8.
Introduction: The process of discovering novel biomarkers and potential therapeutic targets may be shortened using proteomic and metabolomic approaches.

Areas covered: Several complementary strategies, each one presenting different advantages and limitations, may be used with these novel approaches. In vitro studies show how cells involved in cardiovascular disease react, although the phenotype of cultured cells differs to that occurring in vivo. Tissue analysis either in human specimens or animal models may show the proteins that are expressed in the pathological process, although the presence of structural proteins may be confounding. To identify circulating biomarkers, analyzing the secretome of cultured atherosclerotic tissue, analysis of blood cells and/or plasma may be more straightforward. However, in the latter approach, high-abundant proteins may mask small molecules that could be potential biomarkers. The study of sub-proteomes such as high-density lipoproteins may be useful to circumvent this limitation. Regarding metabolomics, most studies have been performed in small populations, and we need to perform studies in large populations in order to discover robust biomarkers.

Expert commentary: It is necessary to involve the clinicians in these areas to improve the design of clinical studies, including larger populations, in order to obtain consistent novel biomarkers.  相似文献   


9.
《Biomarkers》2013,18(7):541-552
Abstract

Context: The definitive standard for the diagnosis of nonalcoholic fatty liver disease (NAFLD) is clinico-pathological correlation, but frequently the only laboratory abnormality is an elevation of serum aminotransferases.

Objective: This has resulted in the search for more specific laboratory biomarkers.

Methods: The literature was searched for novel plasma/serum markers of NAFLD.

Results: Studies reviewed here included histologically-confirmed patients presenting some stage of NAFLD and monitored one or more novel serum/plasma biomarkers.

Conclusion: The most promising application of some of these novel biomarkers for the detection and quantification of NAFLD and particularly NASH appears to be in the combination of several into diagnostic panels.  相似文献   

10.
Caenorhabditis elegans is an exceptionally valuable model for aging research because of many advantages, including its genetic tractability, short lifespan, and clear age‐dependent physiological changes. Aged C. elegans display a decline in their anatomical and functional features, including tissue integrity, motility, learning and memory, and immunity. Caenorhabditis elegans also exhibit many age‐associated changes in the expression of microRNAs and stress‐responsive genes and in RNA and protein quality control systems. Many of these age‐associated changes provide information on the health of the animals and serve as valuable biomarkers for aging research. Here, we review the age‐dependent changes in C. elegans and their utility as aging biomarkers indicative of the physiological status of aging.  相似文献   

11.
Evaluation of: Diamond DL, Krasnoselsky AL, Burnum KE et al. Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation. Hepatology 56(1), 28–38 (2012).

HCV is a major cause of chronic liver disease worldwide and is a formidable therapeutic challenge. Recently, Diamond et al. analyzed the proteomic profiles of liver samples from HCV-positive liver transplant recipients, supplemented with an independent metabolite analysis. They used a computational approach, which highlighted the enriched functional themes and topological attributes associated with the protein association network based on their clinical data and suggested a crucial role of oxidative stress in fibrosis progression in HCV infection. Their findings provide new insights into the mechanisms that regulate the progression of HCV-associated liver fibrosis, which may be useful for identification of suitable biomarkers to evaluate the onset and severity of hepatic fibrosis and the development of new therapeutic and anti-HCV strategies.  相似文献   

12.
《Free radical research》2013,47(12):1469-1478
ABSTRACT

Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27–38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-isoPF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO2Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose–response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO2Gua. These relationships suggest NP may play a role in the pregnancy complications.  相似文献   

13.
14.
Introduction: The increasing prevalence of hyperglycaemia implicates a state of oxidative stress and inflammation. Traditional and emerging biomarkers associated with increasing hyperglycaemia were assessed to clarify their role they play in hyperglycaemia.

Results: 309 participants attending a rural diabetic screening program were categorised into control and quintile groups based upon glucose levels: 1st quintile - <4.5?mmol/L and 4th, 5th quintile - >6.1?mmol/L. Significant results were obtained for anthropometric data and biochemical markers - glucose, HbA1c and total cholesterol (P?P?P?P?Conclusion: This study provided further evidence that inflammatory and oxidative stress biomarkers may contribute to diagnostic information associated with preclinical increases in BGL. Further we have provided a unique study in the analysis of ratios of inflammatory biomarkers and correlations with increasing BGL.  相似文献   

15.
In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP) was detected in the plasma of chronic uremic patients. The aim of the present studies was to find out that which plasma fraction(s) is responsible for AOPP reactivity. Thermal treatment of pooled samples of human citrate-plasma or EDTA-plasma at 50°C resulted in a rapid and parallel loss of fibrinogen concentration and AOPP reactivity. On the basis of time course and t1/2 values following thermal treatment, AOPP was indistinguishable from fibrinogen. There was a statistically significant (p < 0.0001) correlation between levels of blood plasma fibrinogen and AOPP in patients (n = 61) with various peripheral vascular or cardiovascular diseases. There was also a significant (p < 0.0001) relationship between plasma levels of fibrinogen and molar AOPP/fibrinogen ratio indicating that higher fibrinogen concentrations were associated with more oxidatively transformed groups on the molecule. Results of the present studies suggest that post-translationally modified fibrinogen is a key molecule responsible for human plasma AOPP reactivity. It remains to be elucidated what is the pathophysiological significance of the post-translationally modified fibrinogen in the inflammation-associated events of atherosclerosis, in platelet aggregation, and as a cardiovascular risk biomarker.  相似文献   

16.
Wang  Tietao  Gao  Fen  Kang  Yiwen  Zhao  Chao  Su  Tao  Li  Muhang  Si  Meiru  Shen  Xihui 《Biotechnology letters》2016,38(7):1221-1228
Objectives

To investigate mycothiol peroxidase (MPx) of Corynebacterium glutamicum that is a novel CysGPx family peroxidase using both the mycoredoxin and thioredoxin reducing systems as proton donors for peroxide detoxification and may be involved in the relief of acid stress.

Results

A Δmpx mutant exhibited significantly decreased resistance to acid stress and markedly increased accumulation of reactive oxygen species (ROS) and protein carbonylation levels in vivo. Over-expression of mpx increased the resistance of C. glutamicum to acid stress by reducing ROS accumulation. The stress-responsive extracytoplasmic function-sigma (ECF-σ) factor, SigH, mediated acid-induced expression of mpx in the wild-type under acid conditions, which in turn directly contributed to tolerance to acid stress.

Conclusion

MPx is essential for combating acid stress by reducing intracellular ROS levels induced by acid stress in C. glutamicum, which adds a new dimension to the general physiological functions of CysGPx.

  相似文献   

17.
ABSTRACT

The increasing number of patients suffering from allergic diseases is a global health problem. Grifola frondosa is an edible mushroom consumed as a health food in Asia, and has recently been reported to have anti-allergic effects. We previously reported that G. frondosa extract (GFE) and its active components, ergosterol and its derivatives, inhibited the antigen-induced activation of RBL-2H3 cells. Here, we demonstrated that GFE and ergosterol also had an inhibitory effect on the degranulation of bone marrow–derived mast cells (BMMCs) and alleviated anaphylactic cutaneous responses in mice. Using an air pouch-type allergic inflammation mouse model, we confirmed that oral administration of GFE and ergosterol suppressed the degranulation of mast cells in vivo. Our findings suggest that G. frondosa, including ergosterol as its active component, reduces type I allergic reactions by suppressing mast cell degranulation in mice, and might be a novel functional food that prevents allergic diseases.  相似文献   

18.
Abstract

Deoxyribonucleoside triphosphates (dNTPs) are building blocks for the biosynthesis of DNA. Various modified dNTPs’ analogs have synthesized by structural changes of nucleoside’s susgar and nucleobases and employed for synthesis of modified DNA. A very few modified dNTPs have prepared from non-sugar nucleoside analogs. This report describes the synthesis of acyclic nucleoside triphosphate (NTP) analog from amino acid L-Serine as aminopropanolyl-thymine triphosphate (ap-TTP) and demonstrate its biochemical evaluation as enzymatic incorporation of ap-TTP into DNA with DNA polymerases with primer extension methods. Alanyl peptide nucleicacids (Ala-PNA) are the analogs of DNA which contains alanyl backbone. Aminopropanolyl – analogs are derivatives of alanyl back bone. Ap-TTP analog is nucleoside triphosphate analog derived from Ala-PNA. Importantly, this report also sheds light on the crystal packing arrangement of alaninyl thymine ester derivative in solid-state and reveals the formation of self-duplex assembly in anti-parallel fashion via reverse Watson-Crick hydrogen bonding and π–π interactions. Hence, ap-TTP is a useful analog which also generates the free amine functional group at the terminal of DNA oligonucleotide after incorporation.  相似文献   

19.
《Biomarkers》2013,18(7):585-589
Abstract

Context: Circulating miRNAs are potential biomarkers that can be important molecules driving cell-to-cell communication.

Objective: To investigate circulating muscle-specific miRNAs in recreational athletes.

Materials and methods: Three miRNAs from whole plasma before and after a half-marathon were analyzed by qPCR.

Results: MiR-1, ?133a, and ?206 significantly increased after the race.

Discussion: Increased levels of miRNAs after exercise point to potential biomarkers and to the possibility of being functional players following endurance training.

Conclusion: These miRNAs are potential biomarkers of muscle damage or adaptation to exercise.  相似文献   

20.
The increased global demand for food production has motivated agroindustries to increase their own levels of production. Scientific efforts have contributed to improving these production systems, aiding to solve problems and establishing novel conceptual views and sustainable alternatives to cope with the increasing demand. Although microorganisms are key players in biological systems and may drive certain desired responses toward food production, little is known about the microbial communities that constitute the microbiomes associated with agricultural and veterinary activities. Understanding the diversity, structure and in situ interactions of microbes, together with how these interactions occur within microbial communities and with respect to their environments (including hosts), constitutes a major challenge with an enormous relevance for agriculture and biotechnology. The emergence of high-throughput sequencing technologies, together with novel and more accessible bioinformatics tools, has allowed researchers to learn more about the functional potential and functional activity of these microbial communities. These tools constitute a relevant approach for understanding the metabolic processes that can occur or are currently occurring in a given system and for implementing novel strategies focused on solving production problems or improving sustainability. Several ‘omics’ sciences and their applications in agriculture are discussed in this review, and the usage of functional metagenomics is proposed to achieve substantial advances for food agroindustries and veterinary sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号