首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Bacterial seed and boll rot disease is a newly emerging threat to the cotton growers. Disease prediction model was devised to predict the disease progression impacted by the vector (Dysdercus cingulatus) and environmental variables (maximum air temperature, minimum air temperature, relative humidity and rainfall) on four varieties to minimise its losses and disease management cost. Impact of a-biotic environmental variables (maximum and minimum air temperature, relative humidity and rainfall) was assessed on bacterial seed and rot of cotton disease and its vector (D. cingulatus) on FH-941, FH-942, MNH-886 and FH-114 cotton varieties. Maximum red cotton bug population was assessed at 29–31 °C maximum temperature and at 15–17 °C minimum temperature. Disease severity was noticed maximum when maximum and minimum temperature was measured at 28–29 °C and 13–14.5 °C, respectively. Vector population was maximum when relative humidity and rainfall were 63–66% and 1.50–2.5 mm, respectively. Relative humidity at 66–68% and 0.5–1.5 mm rainfall favoured disease development. With increase in number of bugs, increase in disease severity was noted, maximum disease severity 45–48% noticed when 7–8 bugs were recorded. Red cotton bug (Dysdercus cingulatus) population prediction model was devised based on a-biotic factors (maximum and minimum air temperature, relative humidity and rainfall) on four cotton varieties. Disease forecasting model was developed based on biotic (D. cingulatus) and a-biotic factors. A close resemblance between observed and the predicted red cotton bugs and disease severity was seen.  相似文献   

2.
Brown leaf rust (BLR) caused by Peridiopsora mori is one of the major foliar diseases of mulberry (Morus sp.) in the subtropical hills of eastern India. The disease appeared in first week of August and continued up to September with maximum severity in second and third week of September. The disease symptoms appeared at atmospheric temperature (27.00–20.07°C), relative humidity (92.14–82.43%), rainfall (11.20 cm) and rainy days (7) of the preceding week. Disease severity (>50 PDI) was observed at temperature (26.29–19.29°C), relative humidity (94.14–80.14%), rainfall (4.12 cm) and number of rainy days (2–3 days). Apparent rate of infection was found high at temperature (27.00–19.83°C), relative humidity (94.67–85.00%), rainfall (4.6 cm) and rainy days (2) of the preceding week. The correlation coefficient between disease severity and average meteorological factors of the preceding 7 days revealed that BLR disease severity showed significant negative correlation with minimum temperature. It was also revealed that contribution of maximum and minimum temperature 42.23% and 35.21%, maximum and minimum relative humidity (RH) 11.23% and 10.69% and rainfall and number of rainy days 0.11% and 0.50%, respectively towards development of BLR disease severity. Multiple regression analysis revealed that average of maximum and minimum temperatures and minimum RH of preceding 7 days were found to maximally influence BLR disease severity.  相似文献   

3.
In 1989 to 1991, leaf curl disease was observed in cotton (Gossypium bar-badense cv. Local) grown in kitchen gardens in five districts in Karnataka State, India, and in 1994 it was recorded in G. hirsutum cv. Sharada in two districts. Symptoms consist of leaf curling, vein thickening, leaf enations, and stunting and distortion of plants. The disease is caused by cotton leaf curl virus (CLCuV-K), which was transmitted by the whitefly Bemisia tabaci to 24 plant species in six families. Hosts include bean (Phaseolus vulgaris), pepper, tobacco, tomato and several weeds, almost all of which developed leaf curl, with or without vein thickening. CLCuV-K was transmitted from cotton to cotton by adult B. tabaci after an acquisition access period of 1 h, could be inoculated in 5 min, had a minimum latent period of 8 h and was retained by viruliferous insects for up to 9 days. Female B. tabaci transmitted more frequently than males. CLCuV-K is a whitefly-transmitted geminivirus. It reacted with two out of 17 monoclonal antibodies (MAbs) raised to African cassava mosaic virus and five out of 10 MAbs raised to Indian cassava mosaic virus. CLCuV-K isolates from different locations in Karnataka had similar epitope profiles. As judged by these profiles, CLCuV-K is closely related to Indian tomato leaf curl virus from Karnataka, is distinguishable from several other whitefly-transmitted geminiviruses found in India and is still more distantly related to those, including cotton leaf crumple virus from the USA, found in other continents. CLCuV-K infected all cultivars tested of G. barbadense and one of six cultivars of G. hirsutum but none of G. arboreum or G. herbaceum.  相似文献   

4.
Tomato line LA1478 and Pusa Ruby were resistant to tomato leaf curl virus (TLCV) disease. They registered higher plant height, number of branches, total phenol content and yield per plant than the other cultivars. Variety Peto 86 was tolerant to the disease while the other popular tomato cultivars, i.e. Ace, Early Pack, Money Maker, Prichard and Strain B were highly susceptible to the disease. Plant height and number of branches per plant revealed significantly positive association with fruit yield per plant. The disease index of TLCV exhibited significant negative correlations with plant height, total phenol content and fruit yield per plant – 0–4 and 5–25 adult whiteflies were observed on resistant susceptible cultivars. In the case of epiphytically colonisation by Beauveria bassiana conidia, not all developing hyphae on the leaf surface penetrated the whitefly cuticle. Many of the germ tubes elongated to a short distance before terminating its growth. On the other hand, the rapid staining of tomato tissues injected with B. bassiana conidial suspension indicates that the entomopathogenic fungus was established inside tomato tissues until the end time of the trial. The direct injection with the spore suspension yielded high post-colonisation, where the fungus was recovered from sites distant from the point of inoculation. This indicates that the fungus has the potential to move throughout the plant tissues. Laboratory bioassay of tomato whitefly feeding on tomato tissues containing B. bassiana conidial spores indicates that plant endophytic colonisation with entomopathogenic fungi may reduce insect survival on these plants. LT50 values of the test diet were between three and four days. The mortality of Bemisia tabaci was high in the case of endophytically colonisation compared to epiphytically one (90.0% compared to 10.0% during three days) for whiteflies fed tomato tissues containing 1.5 × 107 B. bassiana spores/ml. Application of B. bassiana as an artificial endophyte inside tomato plants can be an important component in the integrated control of tomato whiteflies. The endophytic colonising can achieve biocontrol effect based on induced disease resistance in plant tissues. According the available references, this is the first report on B. tabaci controlling by plant endophytic treatment.  相似文献   

5.
Abstract

The incidence of insect pests in cotton crop, such as Bemisia tabaci, Amrasca devastans and Pectinophora gossypiella (PBW) is dependent on climatic factors, such as maximum and minimum temperature, relative humidity and rainfall. Besides, cotton leaf curl disease (CLCuD) is also a major yield-limiting factor in the cotton crop. The results indicated that non-transgenic genotypes were heavily infested by whitefly, whereas jassid infested all genotypes with little difference. The population of whitefly and jassid acquired peak level in the month of July and August on all the genotypes. The correlation studies indicated the negative correlation of jassid, pink bollworm and CLCuD on yield component, whereas whitefly infestation was found positively correlated with CLCuD. Moreover, multivariate regression analysis (MRA) indicated the maximum and minimum temperature impacted the infestation of whitefly and jassid more than other factors, whereas maximum temperature greatly impacted the infestation of PBW in transgenic genotypes.  相似文献   

6.
Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro‐environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II‐1, ‐5, and ‐7 mitotypes of the Asia II major clade. The whitefly–endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II‐1 and II‐7 mitotypes (r2 = .9, p < .005), while the Asia II‐5 microbiome was less complex. The microbiome OTU groups were mitotype‐specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype‐microbiome co‐adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%–0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II‐5 and ‐7, and one occurred exclusively in Asia II‐1, two only in Asia II‐5, and one in both Asia II‐1 and ‐7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II‐1 and ‐5, and a single Hemipteriphilus OTU occurred in Asia II‐1 and ‐7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.  相似文献   

7.
Insects are ectotherms and their ability to resist temperature stress is limited. The immediate effects of sub‐lethal heat stress on insects are well documented, but longer‐term effects of such stresses are rarely reported. In this study, survival, development and reproduction of the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B, were compared over five consecutive generations at 27, 31 and 35 °C and for one generation at 37 °C. Both temperature and generation significantly affected the fitness of the whitefly. These impacts were more dramatic with increasing generations and temperatures. Among the experimental temperatures, the most favorable for development and reproduction were 27 °C and 31 °C. At 27 °C, survival, development and fecundity were all stable over these five generations. At 31 °C, immature survival rate was the highest in the fifth generation, but female fecundities decreased in the fourth and fifth generations. At 35 °C, egg hatching rate, immature survival rate and female fecundity decreased significantly in the fourth and fifth generations. At 37 °C, survival of B. tabaci was not adversely affected, but female fecundity at 37 °C was less than 10% of that at 27 °C or 31 °C. These results demonstrate that the lethal high temperature for B. tabaci is over 37 °C, and the whitefly population continued expanding in the five generations at 35 °C. The ability of B. tabaci biotype B to survive high temperature stress will play an important role in its population extension under global warming.  相似文献   

8.
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.  相似文献   

9.
Insect neuropeptides play an important role in regulating physiological functions such as growth,development,behavior and reproduction.We identified temperaturesensitive neuropeptides and receptor genes of the cotton whitefly,Bemisia tabaci.We identified 38 neuropeptide precursor genes and 35 neuropeptide receptors and constructed a phylogenetic tree using additional data from other insects.As temperature adaptability enables B.tabaci to colonize a diversity of habitats,we performed quantitative polymerase chain reaction with two temperature stresses(low=4℃ and high=40℃)to screen for temperature-sensitive neuropeptides.We found many neuropeptides and receptors that may be involved in the temperature adaptability of B.tabaci.This study is the first to identify B.tabaci neuropeptides and their receptors,and it will help to reveal the roles of neuropeptides in temperature adaptation of B.tabaci.  相似文献   

10.
Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.  相似文献   

11.
Adult longevity, developmental time and juvenile mortality ofEncarsia formosa Gahan (Hymenoptera:Aphelinidae) parasitizing the Poinsettia-strain ofBemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Poinsettia (Euphorbia pulcherrima Willd.) were investigated in laboratory experiments at three temperatures: 16 °C, 22 °C and 28 °C. Furthermore, the parasitoid's preference for different larval stages of the whitefly was determined at 24.5 °C. The lifespan ofE. formosa decreased with temperature from one month at 16 °C to nine days at 28 °C. A lower temperature threshold of 11 °C for adult development was found. The development of juvenile parasitoids inB. tabaci lasted more than two months at the lowest temperature, but was only 14 days when temperature was 28 °C. The lower temperature threshold for immature development was 13.3 °C, yielding an average of 207 day-degrees for the completion of development into adults. Juvenile mortality was high, varying from about 50% at 16 °C to about 30% at 22 °C and 28 °C.E. formosa preferred to oviposit in the 4th instar and prepupal stages ofB. tabaci followed by the 2nd and 3rd instars. The preference for the pupal stage was low. The parasitoid used all instars of the whitefly for hostfeeding, with no apparent differences between the stages. The average duration of the oviposition posture was four minutes. Demographic parameters were calculated from life tables constructed from the data. The intrinsic rate of increase (r m) and the net reproductive rate (R 0) increased with temperature from 0.0279 day−1 at 16 °C to 0.2388 day−1 at 28 °C and from about 12 at 16 °C to about 66 at 28 °C, respectively.  相似文献   

12.
Abstract To better understand the etiology of begomovirus epidemics in regions under invasion we need to know how indigenous and invasive whitefly vectors respond to virus infection. We investigated both direct and indirect effects of infection with Tomato yellow leaf curl virus (TYLCV) on the performance of the invasive Q biotype and the indigenous Asian ZHJ2 biotype of whitefly Bemisia tabaci. The Q biotype performed better than the ZHJ2 biotype on either uninfected or virus‐infected tomato plants. However, virus‐infection of host plants did not, or only marginally affected, the performance of either biotype of whiteflies in terms of fecundity, longevity, survival, development and population increase. Likewise, association of the vectors with TYLCV did not affect fecundity and longevity of the Q or ZHJ2 biotypes on cotton, a non‐host of TYLCV. These results indicate that the alien Q biotype whitefly, but not the indigenous ZHJ2 biotype, is likely to become the major vector of TYLCV in the field and facilitate virus epidemics.  相似文献   

13.
An epidemic of chilli leaf curl disease was recorded in 2004 in Jodhpur, a major chilli‐growing area in Rajasthan, India. Several isolates were efficiently transmitted by the whitefly (Bemisia tabaci), all of which induced severe leaf curl symptoms in chilli. A single whitefly was capable of transmitting the virus, and eight or more whiteflies per plant resulted in 100% transmission. The minimum acquisition access period (AAP) and inoculation access period (IAP) were 180 and 60 min, respectively. The virus persisted in whiteflies for up to 5 days postacquisition. Of 25 species tested, the virus infected only five (Capsicum annuum, Carica papaya, Solanum lycopersicum, Nicotiana tabacum and N. benthamiana). The virus was identified as Chilli leaf curl virus (ChiLCV), which shared the closest sequence identity (96.1%) with an isolate of ChiLCV from potato in Pakistan and showed sequence diversity up to 12.3% among the ChiLCV isolates reported from India and Pakistan. A betasatellite was identified, which resembled most closely (97.3%) that of Tomato leaf curl Bangladesh betasatellite previously reported from chilli and tomato leaf curl in India. The betasatellite was very different from that reported from chilli leaf curl in Pakistan, indicating that different betasatellites are associated with chilli leaf curl in India and Pakistan. We describe here for the first time the virus–vector relationships and host range of ChiLCV.  相似文献   

14.
Cultures of Bemisia tabaci from Ivory Coast (IC), Pakistan (PK) and USA (US B-type) were compared for the frequency with which they transmitted three tomato geminivirus isolates: Indian tomato leaf curl virus from Bangalore (ITmLCV), and tomato yellow leaf curl viruses from Nigeria (TYLCV-Nig) and Senegal (TYLCV-Sen). Frequency of transmission from tomato to tomato depended both on the whitefly culture and the virus isolate. US B-type and IC whiteflies transmitted TYLCV-Sen more frequently than ITmLCV whereas PK whiteflies transmitted ITmLCV more frequently than TYLCV-Sen. US B-type whiteflies transmitted both viruses four to nine times more frequently than IC whiteflies. TYLCV-Nig was transmitted rarely by US B-type and not at all by IC whiteflies. Previous work indicates that the geminivirus coat protein controls vector transmissibility. The differential adaptation of TYLCV-Sen to transmission by US B-type whiteflies and of ITmLCV to PK whiteflies was associated with a large difference in epitope profile of the coat proteins of the two viruses. Also, the readily transmissible TYLCV-Sen differed appreciably in epitope profile from the poorly transmissible TYLCV-Nig, which reached a consistently greater concentration in source tissues but lacked epitope 18. However, the lack of epitope 18 in ITmLCV did not prevent its transmission by US B-type whiteflies. Differences in frequency and specificity of geminivirus transmission by whitefly cultures from different countries therefore were associated with differences among epitope profiles of the coat proteins of the viruses, but the structural features of the proteins that control transmission remain to be determined.  相似文献   

15.
16.
The incidence of disease caused by tobacco leaf curl geminivirus (TbLCV) in ten tobacco growing areas of India ranged from 1.2% to 77%. The highest incidence of disease was observed in Andhra Pradesh (77%) followed by Gujarat (59%), Karnataka (17%), Bihar (11.6%) and West Bengal (5.4%). Under field conditions, an average of 32 adult whiteflies (Bemisia tabaci) per plant were recorded in Andhra Pradesh followed by Gujarat (20), Karnataka (12), Bihar (8) and West Bengal (5). In sequential sowings at Bangalore, all the plants were infected within 90 days in plots planted from February to June. Infection in plots planted later was progressively less. There was a positive correlation between whitefly catches and the final incidence of leaf curl disease in plantings. TbLCV was transmitted by Bemisia tabaci to 35 plant species, including Beta vulgaris, Capsicum annuum, Carica papaya, Cymopsis tetragonoloba, Lycopersicon esculentum, Sesamum indicum, Phaseolus vulgaris and Petunia hybrida. Forty five TbLCV isolates from different parts of India induced four distinct types of symptoms on tobacco cultivars Samsun and Anand 119. Group 1 isolates caused severe curling and cup-shaped enations; group II isolates induced pale green leaves, pit-like depressions and thorny enations: group III isolates caused leathery leaves, narrow and tiny protruding enations between the veins, and group IV isolates induced irregular thickening and swelling of veins and green flap-like enations on veins. Nylon net covers protected tobacco seedlings in nursery beds for 45 days. Ricinus communis and Helianthus annuus sown around the tobacco nursery bed as barrier crops attracted adult whiteflies and decreased the number found on tobacco.  相似文献   

17.
A progressive displacement of Tomato leaf curl Taiwan virus (ToLCTWV) by Tomato yellow leaf curl Thailand virus (TYLCTHV) from 2005 to 2009 has been recorded in tomato fields in Taiwan. Begomoviruses are exclusively transmitted by Bemisia tabaci complex, so we hypothesised that the displacement of tomato begomoviruses in the fields may be due to the invasion of a new virus/vector and the different transmission efficiencies of the viruses by the vectors. The objective of this research was to compare the transmission efficiency of TYLCTHV and ToLCTWV by the B and Q biotypes of B. tabaci complex. When transmission efficiency, virus retention in vector, and latent period for vector transmission were compared, the B biotype transmitted TYLCTHV and ToLCTWV more efficiently than did the Q biotype, and transmitted TYLCTHV more efficiently than ToLCTWV. The B biotype retained both viruses and remained infective throughout adulthood, but the Q biotype did not keep its infectivity, although it did retain both viruses lifelong. The B biotype transmitted TYLCTHV and ToLCTWV with the shortest latent period. In summary, B. tabaci B biotype and TYLCTHV is the best alliance for disease transmission, so we conclude that this may be one of drivers responsible for the displacement of ToLCTWV by TYLCTHV in tomato fields in Taiwan.  相似文献   

18.
Esterase profiles were examined for over 40 populations of the whitefly,Bemisia tabaci, obtained from native and cultivated plant hosts worldwide. Twelve unique electromorphs were identified from distinct populations concentrated largely in Central America, Africa, and India. One electromorph, type B, has recently been proposed as a separate species,Bemisia argentifolii, and has recently spread throughout much of the world. When considered with evidence from mating studies and the ability to induce phytotoxic disorders (squash silverleaf disorder), our data suggest that the single taxonBemisia tabaci may actually represent a species complex.  相似文献   

19.
An outbreak of the sweetpotato whitefly, Bemisia tabaci (Gennadius), biotype B occurred in the Imperial Valley, California in 1991. The insects destroyed melon crops and seriously damaged other vegetables, ornamentals and row crops. As a result of the need for sampling technology, we developed a whitefly trap (named the CC trap) that could be left in the field for extended time periods. We used the traps to monitor populations ofB. tabaci adults during year-round samplings from 1996 to 2002 to study variations in the weekly trap catches of the insect. The greatest number ofB. tabaci adults was recorded in 1996, followed by a continuing annual decrease in trap catches each year through 2002. The overall decline of B. tabaci is attributed in part to the adoption of an integrated pest management (IPM) program initiated in 1992 and reduced melon hectares from 1996 to 2002. Other factors may also have contributed to the population reductions. Seasonally, B. tabaci trap catches decreased during the late summer and fall concurrent with decreasing minimum tempera- tares that are suggested to be a significant factor affecting seasonal activity and reproduction.  相似文献   

20.
Cotton is an important fibre crop chiefly attacked by a number of diseases. Pre-emergence damping off seedling is an important disease of cotton. Efficacy of three fungicides (Dynesty, Topsin-M and Antracol) was assessed on early mid and late sowings. Topsin-M and Antracol were evaluated at 1X and 2X concentrations, Dynasty was only used at standard dose. Significant increase in seed germination was seen, maximum germination was observed in late sowing. Antracol (2X) significantly improved seed germination rate in all three sowings as compared to other treatments. Impact of environmental parameters on germination rate was assessed relating to seed dressing fungicides at 1X and 2X concentrations. Significant correlation was observed between soil temperature and seedling germination rate by all treatments, 30–31 °C favoured germination rate. Maximum seedling germination rate was observed at 24–26 and 22–23 °C and 45–50% by average air temperature, minimum air temperature and relative humidity respectively. Regression model was contrived to predict seedling germinations impacted by seed dressing fungicides relating to environmental factors. Closed resemblance between observed and predicted values states that model can be used to predict seed germination by treating with fungicides regarding to environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号