首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate Cd phytoremediation ability of Indian mustard, Brassica juncea. The study was conducted with 25, 50, 100, 200 and 400 mg Kg?1 CdCl2 in laboratory for 21 days and Cd concentrations in the root, shoot and leaf tissues were estimated by atomic absorption spectroscopy. The plant showed high Cd tolerance of up to 400 mg Kg?1 but there was a general trend of decline in the root and shoot length, tissue biomass, leaf chlorophyll and carotenoid contents. The tolerance index (TI) of plants were calculated taking both root and shoot lengths as variables. The maximum tolerance (TI shoot = 87.4 % and TI root = 89.6 %) to Cd toxicity was observed at 25 mg Kg?1, which progressively decreased with increase in dose. The highest shoot (10791 μg g?1 dry wt) and root (9602 μg g?1 dry wt) Cd accumulation was achieved at 200 mg kg?1 Cd treatment and the maximum leaf Cd accumulation was 10071.6 μg g?1 dry wt achieved at 100 mg Kg?1 Cd, after 21 days of treatment. The enrichment coefficient and root to shoot translocation factor were calculated, which, pointed towards the suitability of Indian mustard for removing Cd from soil.  相似文献   

2.
Photoautotrophic cultivation of Chlorococcum humicola was performed in batch and continuous modes in different cultivating system arrangements to compare biomass and carotenoids’ concentration and their productivities. Batch result from stirred tank and airlift photobioreactors indicated the positive effect of increasing light intensity on growth and carotenoid production, whereas the finding from continuous cultivation indicated that carotenoid enhancement preferred high light intensity and nitrogen-deficient environment. The highest biomass (1.31?±?0.04?g?L?1) and carotenoid (4.59?±?0.06?mg?L?1) concentration as well as the highest productivities, 0.46?g?L?1 d?1 for biomass and 1.61?mg?L?1 d?1 for carotenoids, were obtained when maintaining high light intensity of 10 klx, BG-11 medium and 2% (v/v) CO2 simultaneously, while the highest carotenoid content (4.84?mg?g?1) was associated with high light intensity and nitrogen-deficient environment, which was induced by feed-modified BG-11 growth medium containing nitrate 20 folds lower than the original medium. Finally, the cultivating system arranged into smaller stirred tank photobioreactors in series yielded approximately 2.5 folds increase in both biomass and carotenoid productivities relative to using single airlift photobioreactor with equivalent working volume and similar operating condition.  相似文献   

3.
A protocol for in vitro propagation of cineraria (Senecio cruentus) was developed. The highest frequency of shoot proliferation was obtained from nodal explants cultured on Murashige and Skoog (MS) medium supplemented with 2.0?mg L?1 6-benzyladenine (BA) and 0.5?mg L?1 ??-naphthalene acetic acid (NAA), with a mean number of 14 shoots per explant. A high concentration of BA (4.0?mg L?1) and repeated subcultures resulted in hyperhydric shoots. Decreasing the BA concentration to 1.0?mg L?1 in the culture medium eliminated hyperhydricity. The concentration of ammonium nitrate (NH4NO3) and temperature had marked effects on somaclonal variation. Variation was observed when the cultures were maintained at 15?°C but not at 25?°C. Variants with blue-colored leaves and stems were identified; whereas, normal plants maintained their green-colored leaves and stems. The highest frequency of variation (67.5?%), with a mean number of 3.0 variant shoots per explants, was obtained on shoot proliferation medium (MS?+?2.0?mg L?1 BA and 0.5?mg L?1 NAA) devoid of NH4NO3. The best rooting (100?%), with the highest number of roots per shoot (10.8) and the greatest root length (6.8?cm) was obtained on medium supplemented with 0.1?mg L?1 NAA. In vitro-grown plantlets were successfully acclimatized in a greenhouse, and transferred to the field.  相似文献   

4.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

5.
Hairy root lines through the infection of Agrobacterium rhizogenes strain (A4) were established from shoot tips and leaves of Rehmannia glutinosa Libosch. Ten lines of hairy roots were selected on the basis of biomass increase in half-strength Gamborg medium (1/2 B5). Transgenic status of the roots was confirmed by polymerase chain reaction using rolB and rolC specific primers. Iridoid glycosides (catalposide, loganin, aucubin and catalpol) and phenylethanoid glycosides (verbascoside and isoverbascoside) identified using HPLC?CESI?CMS, and their contents were compared with untransformed root culture and roots of 1-year-old field-grown plants of R. glutinosa by RP-HPLC. The growth and production of secondary metabolites in ten hairy root lines varied considerably as to the media. Woody plant (WP) medium displayed higher growth in terms of fresh (FW) and dry weights (DW) compared to 1/2 B5 medium. High-yielding hairy root lines produced higher amounts of loganin, catalposide, verbascoside and isoverbascoside in comparison to the untransformed root culture and roots of 1-year-old field-grown plants. The highest amounts of catalposide and loganin in transformed roots were 4.45?mg?g?1 DW (RS-2 hairy root line) and 4.66?mg?g?1 DW (RS-1 hairy root line), respectively. Aucubin and catalpol were detected in some lines in trace amounts. The highest amounts of verbascoside (16.9?mg?g?1 DW) and isoverbascoside (3.46?mg?g?1 DW) were achieved in RS-2 root line. The contents of catalposide, verbascoside and isoverbascoside in high-producing lines were several times higher than in untransformed root culture and roots of R. glutinosa plants grown in soil. Loganin and aucubin could not be detected in roots of field-grown plants. However, the levels of catalpol were much lower in the in vitro roots.  相似文献   

6.
This paper investigates the relationship between vascular plant production and CH4 emissions from an arctic wet tundra ecosystem in north‐east Greenland. Light intensity was manipulated by shading during three consecutive growing seasons (1998–2000). The shading treatment resulted in lower carbon cycling in the ecosystem as mean seasonal net ecosystem exchange (NEE) decreased from ?336 to ?196 mg CO2 m?2 h?1 and from ?476 to ?212 mg CO2 m?2 h?1 in 1999 and 2000, respectively, and total ecosystem respiration decreased from 125 to 94 mg CO2 m?2 h?1 in 1999 and from 409 to 306 mg CO2 m?2 h?1 in 2000. Seasonal mean CH4 emissions in controls and shaded plots were, respectively, 6.5 and 4.5 mg CH4 m?2 h?1 in 1999 and 8.3 and 6.2 mg CH4 m?2 h?1 in 2000. We found that CH4 emission was sensitive to NEE and carbon turnover, and it is reasonable to assume that the correlation was due to a combined effect of vegetative CH4 transport and substrate quality coupled to vascular plant production. Total above‐ground biomass was correlated to mean seasonal CH4 emission, but separation into species showed that plant‐mediated CH4 transport was highly species dependent. Potential CH4 production peaked at the same depth as maximum root density (5–15 cm) and treatment differences further suggest that substrate quality was negatively affected by decreased NEE in the shaded plots. The concentration of dissolved CH4 decreased in the control plots as the growing season progressed while it was relatively stable in the shaded plots. This suggests that a progressively better developed root system in the controls increased the capacity to transport CH4 from the soil to the atmosphere. In conclusion, vascular plant photosynthetic rate and subsequent allocation of recently fixed carbon to below‐ground structures seemed to influence both vegetative CH4 transport and substrate quality.  相似文献   

7.
Abstract

Betulin (B) and betulinic acid (BA) are two triterpenes with diverse pharmacological and physiological actions. Elicitation of Betula pendula Roth cell cultures by elicitors is an excellent strategy to increase B and BA levels. Six abiotic and biotic elicitors were studied to improve accumulation of B and BA in the cell culture of B. pendula. The B and BA production in treated cells was verified by HPLC. The results showed the maximum growth index (7) on day 3 in cells treated with 0.5?mg L?1 chlorocholine chloride (CCC). The increased accumulation of BA in the cells treated with 200?mg L?1 of chitosan was found to be 5.9?×?(6.5?mg g?1 DW) higher over control cells. Treating the cells with 2?mg L?1 of CCC, after 7?days, led to 149.3× enhancement of B content (19.4?mg g?1 DW) over the controls. Production of this triterpenoid at a much shorter time with a much higher growth rate can be economic and lead to producing large amounts of B and BA for anti-cancer and HIV drugs preparation.  相似文献   

8.
Abstract

An experiment was performed for 240 days to evaluate the oil removal through natural attenuation (NA) and phytoremediation (PH) combined with surfactant (SF), in soil up to 76,585?mg kg?1 of total petroleum hydrocarbons (TPH). A completely randomized design was applied using a 4?×?6 factorial arrangement, with four concentrations of oil and six recovery technologies. The technologies were combinations of Leersia hexandra (Lh) grass, NA (native microorganisms), and doses of Tween® 80. The results recorded treatment means with statistical differences (Tukey, p?≤?0.05 and 0.01). Oil in presence of 5% SF stimulated the formation of grass roots. The SF promoted a significant increase in the biomass of grass stems and leaves but did not contribute to oil removal or microbial density. Unexpectedly, the PH inhibited the removal of oil and induced a decrease in fungi, hydrocarbonoclastic bacteria, and heterotrophic fungi. NA combined with 2.5% SF removed 95% of 48,748?mg of TPH. The best technology for soil decontamination was bioremediation through hydrocarbonoclastic bacteria stimulated with 2.5% SF.  相似文献   

9.
Abstract

This study deals with the open pond (OP) pilot scale treatment of cassava effluent and enhancement of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) enzyme through CO2 utilization by the microalga, Acutodesmus obliquus RDS01. The cassava effluent treatment (ET) revealed maximum reduction of ammonia (96.8%), calcium (94.6%), chloride (95.2%), chlorine (98.5%), inorganic phosphate (94.6%), magnesium (96.8%), nitrate (96.89%), organic carbon (95.9%), organic phosphorus (96.3%), potassium (97.9%), sodium (97.1%), and sulfate (95.4%) on 15th day using A. obliquus. The microalga produced highest RuBisCO enzyme activity (90%), CO2 utilization efficiency (95%), biomass (8.9 gL?1), lipid (176.65?mg mL?1), carbohydrate (96.78?mg mL?1), biodiesel (4.1?mL g?1), and bioethanol (3.7?mL g?1) during OP treatment. The isolated RuBisCO gene (rbcL) was used to construct the protein model by homology modeling. The microalgal-lipid content was analyzed through thin layer chromatography, the biodiesel produced was analyzed using Fourier-transform infrared spectroscopy and gas chromatography mass spectrometry (GCMS). The bioethanol production was confirmed by high performance liquid chromatography and GCMS analyses. A. obliquus produced of 98.75% biodiesel and 96.83% bioethanol in the OP pilot scale treatment A. obliquus. Overall, the microalga A. obliquus could act as an effective CO2 capturing and bioremediation agent in the cassava ET, and also for the biodiesel and bioethanol can be produced.  相似文献   

10.

Microshoots of the East Asian medicinal plant species Schisandra chinensis (Chinese magnolia vine) were grown in bioreactors characterized by different construction and cultivation mode. The tested systems included two continuous immersion systems—a cone-type bioreactor (CNB) and a cylindric tube bioreactor (CTB), a nutrient sprinkle bioreactor (NSB), and two temporary immersion systems (TIS)—RITA® and Plantform. Microshoots were grown for 30 and 60 days in the MS medium enriched with 1 mg l?1 NAA and 3 mg l?1 BA. The accumulation of two groups of phenolic compounds: phenolic acids and flavonoids in the bioreactor-grown S. chinensis biomass, was evaluated for the first time. In the microshoot extracts, seven phenolic acids: chlorogenic, gallic, p–hydroxybenzoic, protocatechuic, syringic, salicylic and vanillic, and three flavonoids: kaempferol, quercitrin and rutoside, were identified. The highest total amount of phenolic acids (46.68 mg 100 g?1 DW) was recorded in the biomass maintained in the CNB for 30 days. The highest total content of flavonoids (29.02 mg 100 g?1 DW) was found in the microshoots maintained in the NSB for 30 days. The predominant metabolites in all the tested systems were: gallic acid (up to 10.01 mg 100 g?1 DW), protocatechuic acid (maximal concentration 16.30 mg 100 g?1 DW), and quercitrin (highest content 21.00 mg 100 g?1 DW).

  相似文献   

11.
Aims: To isolate a biosurfactant (BS)‐producing bacterium, to characterize the BS properties and to evaluate its ability to enhance pesticide solubilization for further application in environmental remediation. Methods and Results: Five BS‐producing bacteria were isolated from fuel oil‐contaminated soil. Among them, Burkholderia cenocepacia BSP3 exhibited the highest emulsification index and was chosen for further study. Glucose‐containing medium supplemented with nitrate or sunflower seed oil provided suitable conditions for growth and BS production. The BS was identified as a glucolipid, having a critical micelle concentration (CMC) of 316 mg l?1. It could lower the surface tension of deionized water to 25 ± 0·2 mN m?1 and exhibited good emulsion stability. Finally, the application of the BS to facilitate pesticide solubilization demonstrated that this BS at the concentration below and above its CMC could enhance the apparent water solubility of three pesticides, i.e. methyl parathion, ethyl parathion and trifluralin. Conclusions: Burkholderia cenocepacia BSP3 is a BS‐producing bacterium isolated from oil‐contaminated soil. The BS was identified as a glucolipid having a molecular mass of 550·4 g mol?1. An apparent yield of the BS was 6·5 ± 0·7 g l?1. This glucolipid‐type BS noticeably enhanced pesticide solubilization suggesting its role in environmental remediation. Significance and Impact of the Study: A glucolipid type BS normally found in marine micro‐organisms was isolated from a soil‐bacterium. Due to its surface active properties and good performance in enhancement of pesticide solubilization, it could be used as a solubilizing agent for environmental remediation and synergistic treatment with bioremediation of pesticide‐contaminated soil.  相似文献   

12.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

13.
This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4, and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P < 0.001) correlated with water table: a negative correlation at the ridge and transition locations, but a positive correlation at the permanently flooded swamp location. Both soil gas profile analysis and surface gas flux measurements indicated that the ridge and transition locations could be a sink of atmospheric CH4, especially in warm seasons, but generally functioned as a minor source of CH4 in cool seasons. The swamp location was a major source of CH4, and the emission rate was higher in the warm seasons (mean 28 and median 23 mg m?2 h?1) than in the cool seasons (both mean and median 13 mg m?2 h?1). Average CO2 emission rate was 251, 380 and 52 mg m?2 h?1 for the ridge, transition and swamp location, respectively. At each location, higher CO2 emission rates were also found in the warm seasons. The lowest CO2 emission rate was found at the swamp location, where soil C content was the highest, due to less microbial biomass, less CO2 production in such an anaerobic environment, and greater difficulty of CO2 diffusion to the atmosphere. Cumulative global warming potential emission from these three greenhouse gases was in an order of swamp > transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission.  相似文献   

14.
We investigated soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) exchanges in an age‐sequence (4, 17, 32, 67 years old) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada, for the period of mid‐April to mid‐December in 2006 and 2007. For both CH4 and N2O, we observed uptake and emission ranging from ?160 to 245 μg CH4 m?2 h?1 and ?52 to 21 μg N2O m?2 h?1, respectively (negative values indicate uptake). Mean fluxes from mid‐April to mid‐December across the 4, 17, 32, 67 years old stands were similar for CO2 fluxes (259, 246, 220, and 250 mg CO2 m?2 h?1, respectively), without pattern for N2O fluxes (?3.7, 1.5, ?2.2, and ?7.6 μg N2O m?2 h?1, respectively), whereas the uptake rates of CH4 increased with stand age (6.4, ?7.9, ?10.8, and ?23.3 μg CH4 m?2 h?1, respectively). For the same period, the combined contribution of CH4 and N2O exchanges to the global warming potential (GWP) calculated from net ecosystem exchange of CO2 and aggregated soil exchanges of CH4 and N2O was on average 4%, <1%, <1%, and 2% for the 4, 17, 32, 67 years old stand, respectively. Soil CO2 fluxes correlated positively with soil temperature but had no relationship with soil moisture. We found no control of soil temperature or soil moisture on CH4 and N2O fluxes, but CH4 emission was observed following summer rainfall events. LFH layer removal reduced CO2 emissions by 43%, increased CH4 uptake during dry and warm soil conditions by more than twofold, but did not affect N2O flux. We suggest that significant alternating sink and source potentials for both CH4 and N2O may occur in N‐ and soil water‐limited forest ecosystems, which constitute a large portion of forest cover in temperate areas.  相似文献   

15.
There has been considerable interest in cultivation of green microalgae (Chlorophyta) as a source of lipid that can alternatively be converted to biodiesel. However, almost all mass cultures of algae are carbon-limited. Therefore, to reach a high biomass and oil productivities, the ideal selected microalgae will most likely need a source of inorganic carbon. Here, growth and lipid productivities of Tetraselmis suecica CS-187 and Chlorella sp were tested under various ranges of pH and different sources of inorganic carbon (untreated flue gas from coal-fired power plant, pure industrial CO2, pH-adjusted using HCl and sodium bicarbonate). Biomass and lipid productivities were highest at pH 7.5 (320?±?29.9 mg biomass L?1 day?1and 92?±?13.1 mg lipid L?1 day?1) and pH 7 (407?±?5.5 mg biomass L?1 day?1 and 99?±?17.2 mg lipid L?1 day?1) for T. suecica CS-187 and Chlorella sp, respectively. In general, biomass and lipid productivities were pH 7.5?>?pH 7?>?pH 8?>?pH 6.5 and pH 7?>?pH 7.5?=?pH 8?>?pH 6.5?>?pH 6?>?pH 5.5 for T. suecica CS-187 and Chlorella sp, respectively. The effect of various inorganic carbon on growth and productivities of T. suecica (regulated at pH?=?7.5) and Chlorella sp (regulated at pH?=?7) grown in bag photobioreactors was also examined outdoor at the International Power Hazelwood, Gippsland, Victoria, Australia. The highest biomass and lipid productivities of T. suecica (51.45?±?2.67 mg biomass L?1 day?1 and 14.8?±?2.46 mg lipid L?1 day?1) and Chlorella sp (60.00?±?2.4 mg biomass L?1 day?1 and 13.70?±?1.35 mg lipid L?1 day?1) were achieved when grown using CO2 as inorganic carbon source. No significant differences were found between CO2 and flue gas biomass and lipid productivities. While grown using CO2 and flue gas, biomass productivities were 10, 13 and 18 %, and 7, 14 and 19 % higher than NaHCO3, HCl and unregulated pH for T. suecica and Chlorella sp, respectively. Addition of inorganic carbon increased specific growth rate and lipid content but reduced biomass yield and cell weight of T. suecica. Addition of inorganic carbon increased yield but did not change specific growth rate, cell weight or content of the cell weight of Chlorella sp. Both strains showed significantly higher maximum quantum yield (Fv/Fm) when grown under optimum pH.  相似文献   

16.
《农业工程》2022,42(4):392-397
Phytoremediation is a low-cost but highly efficient and environmentally friendly technology for heavy metal soil remediation. However, its success in soils is dependent on the chosen plant and microbes. Moreover, the effect of mycorrhizal fungi and bacteria on CO2 release, mineralization rate, and metal translocation in cadmium and lead-contaminated cattails plant is unknown. The goal of the research was to look into the effects of bacteria, mycorrhiza, and cattails on CO2 release, mineralization rate, lead (Pb), and cadmium (Cd) removal from soil. The experiment used six different combinations (mycorrhiza, bacillus 10 mL, bacillus 100 mL, mycorrhiza + bacillus 10 mL, mycorrhiza + bacillus 100 mL, and control). The results showed that combining mycorrhiza with bacillus 100 mL resulted in greater increases in CO2 release, polysaccharides content and mineralization rate (2.84 mg CO2 g?1 in dry soil, 0.90 mg, 0.021 mg C g?1 dry soil day?1). More crucially, mycorrhiza + bacillus 100 mL roots had the greatest quantities of Cd and Pb (18.26 mg kg?1 and 155.22 mg kg?1), showing that bacteria had a prominent part in the phytoextraction process. Regarding Cd, the bacillus 100 mL had the highest translocation factor (TF) (3.99) and biological accumulation factor (BAF) (75.54), indicating effective translocation and excessive Cd accumulation in the plant. Bacillus 100 and mycorrhiza + bacillus 100 had the highest Pb TF (0.49) and BAF (6.08). Ultimately, the elimination of Cd and Pb was linked to the maximum bacterial cell density, mycorrhizal activity, and CO2 emission, resulting in a unique phytoremediation in Pb-Cd contaminated cattails rhizosphere soils.  相似文献   

17.
The potential activity of methane production was determined in the vertical profiles of the peat deposits of three bogs in Tver oblast, which were representative of the boreal zone. In the minerotrophic fen, the rates of methane production measured throughout the profile did not change significantly with depth and comprised 3–6 ng CH4-C g?1 h?1. In ombrotrophic peat bogs, the rate did not exceed 5 ng CH4-C g?1 h?1 in the upper layer of the profile (up to 1.5 m) and increased to 15–30 ng CH4-C g?1 h?1 in the deep layers of the peat deposits. The distribution of fermentative microorganisms and methanogens in the profiles of peat deposits was uniform in all the studied bogs. In bog water samples, the presence of butyrate (up to 14.1 mg 1?1) and acetate (up to 2.4 mg 1?1) was revealed throughout the whole profile; in the upper 0.5-m layer of the ombrotrophic bogs, formate (up to 8.9 mg 1?1) and propionate (up to 0.3 mg 1?1) were detected as well. The arrangement of local maxima of the fatty acid content and methanogenic activity in the peat deposits, as well as the decrease in the acetate concentrations during summer, support the hypothesis that the initial substrates for methanogenesis come from the upper peat layers. It was established that the addition of sulfate and nitrate inhibits methane production in peat samples; the changes in the concentrations, recorded in situ, may also influence the methane content in peat layers.  相似文献   

18.
Abstract

Betulin (B) and betulinic acid (BA) are two triterpenoids with a wide range of biological and medicinal activities in different organs of Betula pendula. This research aimed to increase the accumulation of B and BA in the hairy root culture of B. pendula by seven biotic and abiotic elicitors. Hairy root was induced in the stem’s inner bark of B. pendula using the C58C1 strain in the WPM (Woody Plant Medium). The effects of different concentrations of elicitors and different time of root harvest in hairy root culture of B. pendula showed that highest level of growth index (GI), B, and BA was acquired in treated hairy roots with chitosan (CTS), chlorocholine chloride (CCC) and chitosan nano-fiber (CTS NF). Highest GI of B. pendula hairy roots was 13 that was obtained in the roots treated with CTS 150?mg l?1 on the 8th day. The highest content of BA was 1.3?mg g?1 DW after treatment with 1?mg l?1CCC on the 4th and 6th days and 200?mg l?1CTS NF on the 10th day. The highest B content (0.94?mg g?1DW) was obtained in the treated hairy root by 2?mg l?1 CCC after 4 and 6?days.  相似文献   

19.
Growth, photosynthesis, dark respiration and pigment contents were monitored in adult sporophytes of the Antarctic brown alga Desmarestia menziesii J. Agardh grown under fluctuating Antarctic daylength conditions. Growth rates were closely coupled to daylength variations with values varying from 0.05% d?1 in winter condition (July-August) to 0.5% d?1 in early summer (December). Photosynthetic pigments had maximum values of 1.8 mg g?1 FW (chlorophyll a), 0.4 mg g?1 FW (chlorophyll c) and 0.9 mg g?1 FW (fucoxanthin) in summer. These changes were also closely related to individual size and biomass of the plants. Net photosynthesis (Pmax), on a fresh weight basis, showed a clear seasonal pattern with highest rates of 25μmol O2 g?1 FW h?1 in October and minima close to 9μmol O2 g?1 FW h?1 in April. Dark respiration was high in spring (13μmol O2 g?1 FW h?1) approximately coinciding with growth peaks. Likewise, photosynthetic efficiency (α) and the initial saturating light point of photosynthesis (lk) increased significantly in spring [1.3 μimol O2 g?1 FW h?1 (μmol m?2 s?1)?1 and 26μmol photons m?2 s?1, respectively]. In the case of α, no significant differences between fresh weight and Chl a based rates were found. The results of the present study are the first that demonstrate seasonality of physiological parameters in D. menziesii sporophytes and confirm also that phenology and physiology of macroalgae can be simulated in the laboratory. On the other hand this study adds new elements to the explanation of the life strategy of D. menziesii, in particular that algal growth and photosynthesis occur under a programmed seasonal pattern.  相似文献   

20.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号